

deb-pkg-tools: Debian packaging tools

Welcome to the documentation of deb-pkg-tools version 8.4!
The following sections are available:

	User documentation

	API documentation

	Change log

User documentation

The readme is the best place to start reading, it’s targeted at all users and
documents the command line interface:

	deb-pkg-tools: Debian packaging tools
	Status

	Installation

	Usage

	Dependencies

	Platform compatibility
	Disabling sudo usage

	Contact

	License

API documentation

The following API documentation is automatically generated from the source code:

	API documentation
	deb_pkg_tools.cache
	Internals

	deb_pkg_tools.checks

	deb_pkg_tools.cli

	deb_pkg_tools.config

	deb_pkg_tools.control

	deb_pkg_tools.deb822

	deb_pkg_tools.deps

	deb_pkg_tools.gpg
	GnuPG 2.1 compatibility
	Storage of secret keys

	Unattended key generation

	deb_pkg_tools.package

	deb_pkg_tools.repo

	deb_pkg_tools.utils

	deb_pkg_tools.version

	deb_pkg_tools.version.native

Change log

The change log lists notable changes to the project:

	Changelog
	Release 8.4 (2021-03-09)

	Release 8.3 (2020-05-11)

	Release 8.2 (2020-05-02)

	Release 8.1 (2020-04-25)

	Release 8.0 (2020-04-25)

	Release 7.0 (2020-02-07)

	Release 6.1 (2020-02-05)

	Release 6.0 (2019-09-13)

	Release 5.2 (2018-11-17)

	Release 5.1.1 (2018-10-26)

	Release 5.1 (2018-10-26)

	Release 5.0 (2018-10-25)

	Release 4.5 (2018-02-25)

	Release 4.4 (2018-02-25)

	Release 4.3 (2018-02-25)

	Release 4.2 (2017-07-10)

	Release 4.1 (2017-07-10)

	Release 4.0.2 (2017-02-02)

	Release 4.0.1 (2017-02-01)

	Release 4.0 (2017-01-31)

	Release 3.1 (2017-01-27)

	Release 3.0 (2016-11-25)

	Release 2.0 (2016-11-18)

	Release 1.37 (2016-11-17)

	Release 1.36 (2016-05-04)

	Release 1.35 (2015-09-24)

	Release 1.34.1 (2015-09-07)

	Release 1.34 (2015-07-16)

	Release 1.33 (2015-07-16)

	Release 1.32.2 (2015-05-01)

	Release 1.32.1 (2015-05-01)

	Release 1.32 (2015-04-23)

	Release 1.31 (2015-04-11)

	Release 1.30 (2015-03-18)

	Release 1.29.4 (2015-02-26)

	Release 1.29.3 (2014-12-16)

	Release 1.29.2 (2014-12-16)

	Release 1.29.1 (2014-11-15)

	Release 1.29 (2014-10-19)

	Release 1.28 (2014-09-17)

	Release 1.27.3 (2014-08-31)

	Release 1.27.2 (2014-08-31)

	Release 1.27.1 (2014-08-31)

	Release 1.27 (2014-08-31)

	Release 1.26.4 (2014-08-30)

	Release 1.26.3 (2014-08-30)

	Release 1.26.2 (2014-08-30)

	Release 1.26 (2014-08-30)

	Release 1.25 (2014-08-30)

	Release 1.24.1 (2014-08-26)

	Release 1.24 (2014-08-26)

	Release 1.23.4 (2014-08-04)

	Release 1.23.3 (2014-06-27)

	Release 1.23.2 (2014-06-25)

	Release 1.23.1 (2014-06-25)

	Release 1.23 (2014-06-25)

	Release 1.22.6 (2014-06-22)

	Release 1.22.5 (2014-06-22)

	Release 1.22.4 (2014-06-22)

	Release 1.22.3 (2014-06-19)

	Release 1.22.2 (2014-06-19)

	Release 1.22.1 (2014-06-16)

	Release 1.22 (2014-06-09)

	Release 1.21 (2014-06-09)

	Release 1.20.11 (2014-06-08)

	Release 1.20.10 (2014-06-08)

	Release 1.20.9 (2014-06-07)

	Release 1.20.8 (2014-06-07)

	Release 1.20.7 (2014-06-07)

	Release 1.20.6 (2014-06-07)

	Release 1.20.5 (2014-06-05)

	Release 1.20.4 (2014-06-01)

	Release 1.20.3 (2014-06-01)

	Release 1.20.2 (2014-06-01)

	Release 1.20.1 (2014-06-01)

	Release 1.20 (2014-06-01)

	Release 1.19 (2014-06-01)

	Release 1.18.5 (2014-05-28)

	Release 1.18.4 (2014-05-28)

	Release 1.18.3 (2014-05-26)

	Release 1.18.2 (2014-05-26)

	Release 1.18.1 (2014-05-25)

	Release 1.18 (2014-05-25)

	Release 1.17.7 (2014-05-18)

	Release 1.17.6 (2014-05-18)

	Release 1.17.5 (2014-05-18)

	Release 1.17.4 (2014-05-18)

	Release 1.17.3 (2014-05-18)

	Release 1.17.2 (2014-05-18)

	Release 1.17.1 (2014-05-18)

	Release 1.17 (2014-05-18)

	Release 1.16 (2014-05-18)

	Release 1.15.2 (2014-05-16)

	Release 1.15.1 (2014-05-10)

	Release 1.15 (2014-05-10)

	Release 1.14.7 (2014-05-04)

	Release 1.14.6 (2014-05-03)

	Release 1.14.5 (2014-05-03)

	Release 1.14.4 (2014-05-03)

	Release 1.14.3 (2014-05-03)

	Release 1.14.2 (2014-04-29)

	Release 1.14.1 (2014-04-29)

	Release 1.14 (2014-04-29)

	Release 1.13.2 (2014-04-28)

	Release 1.13.1 (2014-04-28)

	Release 1.13 (2013-11-16)

	Release 1.12.1 (2013-11-03)

	Release 1.12 (2013-11-03)

	Release 1.11 (2013-11-02)

	Release 1.10.2 (2013-11-02)

	Release 1.10.1 (2013-11-02)

	Release 1.10 (2013-11-02)

	Release 1.9.9 (2013-10-22)

	Release 1.9.8 (2013-10-22)

	Release 1.9.7 (2013-10-22)

	Release 1.9.6 (2013-10-21)

	Release 1.9.5 (2013-10-20)

	Release 1.9.4 (2013-10-20)

	Release 1.9.3 (2013-10-20)

	Release 1.9.2 (2013-10-20)

	Release 1.9.1 (2013-10-20)

	Release 1.9 (2013-10-20)

	Release 1.8 (2013-10-20)

	Release 1.7.2 (2013-10-19)

	Release 1.7.1 (2013-10-18)

	Release 1.7 (2013-10-16)

	Release 1.6.2 (2013-10-13)

	Release 1.6.1 (2013-10-12)

	Release 1.6 (2013-10-12)

	Release 1.5 (2013-10-12)

	Release 1.4.3 (2013-10-12)

	Release 1.4.2 (2013-10-12)

	Release 1.4.1 (2013-08-13)

	Release 1.4 (2013-08-13)

	Release 1.3.2 (2013-08-13)

	Release 1.3.1 (2013-08-11)

	Release 1.3 (2013-08-11)

	Release 1.2 (2013-08-10)

	Release 1.1.4 (2013-08-10)

	Release 1.1.3 (2013-08-10)

	Release 1.1.2 (2013-08-07)

	Release 1.1.1 (2013-08-07)

	Release 1.1 (2013-08-05)

	Release 1.0.3 (2013-08-04)

	Release 1.0.2 (2013-08-04)

	Release 1.0.1 (2013-08-04)

	Release 1.0 (2013-07-26)

deb-pkg-tools: Debian packaging tools

[image: _images/python-deb-pkg-tools.svg]
 [https://travis-ci.org/xolox/python-deb-pkg-tools][image: _images/badge.png]
 [https://coveralls.io/r/xolox/python-deb-pkg-tools?branch=master]The Python package deb-pkg-tools is a collection of functions to build and
inspect Debian binary packages [https://www.debian.org/doc/debian-policy/ch-binary.html] and repositories of binary packages. Its
primary use case is to automate builds.

Some of the functionality is exposed in the command line interface (documented below)
because it’s very convenient to use in shell scripts, while other functionality
is meant to be used as a Python API. The package is currently tested on cPython
2.7, 3.5+ and PyPy (2.7).

Please note that deb-pkg-tools is quite opinionated about how Debian binary
packages should be built and it enforces some of these opinions on its users.
Most of this can be avoided with optional function arguments and/or environment
variables. If you find something that doesn’t work to your liking and you can’t
work around it, feel free to ask for an additional configuration option; I try
to keep an open mind about the possible use cases of my projects.

Contents

	deb-pkg-tools: Debian packaging tools

	Status

	Installation

	Usage

	Dependencies

	Platform compatibility

	Disabling sudo usage

	Contact

	License

Status

On the one hand the deb-pkg-tools package is based on my experiences with
Debian packages and repositories over the past couple of years, on the other
hand deb-pkg-tools itself is quite young. Then again most functionality is
covered by automated tests; at the time of writing coverage is around 90% (some
of the error handling is quite tricky to test if we also want to test the
non-error case, which is of course the main focus :-)

Installation

The deb-pkg-tools package is available on PyPI [https://pypi.python.org/pypi/deb-pkg-tools] which means installation
should be as simple as:

$ pip install deb-pkg-tools

There’s actually a multitude of ways to install Python packages (e.g. the per
user site-packages directory [https://www.python.org/dev/peps/pep-0370/], virtual environments [http://docs.python-guide.org/en/latest/dev/virtualenvs/] or just installing
system wide) and I have no intention of getting into that discussion here, so
if this intimidates you then read up on your options before returning to these
instructions ;-).

When deb-pkg-tools is being used to scan thousands of *.deb archives a
significant speedup may be achieved using memcached:

$ pip install "deb-pkg-tools[memcached]"

Under the hood deb-pkg-tools uses several programs provided by Debian, the
details are available in the dependencies section. To install these programs:

$ sudo apt-get install dpkg-dev fakeroot lintian

Usage

There are two ways to use the deb-pkg-tools package: As a command line
program and as a Python API. For details about the Python API please refer to
the API documentation available on Read the Docs [https://deb-pkg-tools.readthedocs.io]. The command line interface
is described below.

Usage: deb-pkg-tools [OPTIONS] …

Wrapper for the deb-pkg-tools Python project that implements various tools to
inspect, build and manipulate Debian binary package archives and related
entities like trivial repositories.

Supported options:

	Option

	Description

	-i, --inspect=FILE

	Inspect the metadata in the Debian binary package archive given by FILE
(similar to “dpkg --info”).

	-c, --collect=DIR

	Copy the package archive(s) given as positional arguments (and all package
archives required by the given package archives) into the directory given
by DIR.

	-C, --check=FILE

	Perform static analysis on a package archive and its dependencies in order
to recognize common errors as soon as possible.

	-p, --patch=FILE

	Patch fields into the existing control file given by FILE. To be used
together with the -s, --set option.

	-s, --set=LINE

	A line to patch into the control file (syntax: “Name: Value”). To be used
together with the -p, --patch option.

	-b, --build=DIR

	Build a Debian binary package with “dpkg-deb --build” (and lots of
intermediate Python magic, refer to the API documentation of the project
for full details) based on the binary package template in the directory
given by DIR. The resulting archive is located in the system wide
temporary directory (usually /tmp).

	-u, --update-repo=DIR

	Create or update the trivial Debian binary package repository in the
directory given by DIR.

	-a, --activate-repo=DIR

	Enable “apt-get” to install packages from the trivial repository (requires
root/sudo privilege) in the directory given by DIR. Alternatively you can
use the -w, --with-repo option.

	-d, --deactivate-repo=DIR

	Cleans up after --activate-repo (requires root/sudo privilege).
Alternatively you can use the -w, --with-repo option.

	-w, --with-repo=DIR

	Create or update a trivial package repository, activate the repository, run
the positional arguments as an external command (usually “apt-get install”)
and finally deactivate the repository.

	--gc, --garbage-collect

	Force removal of stale entries from the persistent (on disk) package
metadata cache. Garbage collection is performed automatically by the
deb-pkg-tools command line interface when the last garbage collection
cycle was more than 24 hours ago, so you only need to do it manually
when you want to control when it happens (for example by a daily
cron job scheduled during idle hours :-).

	-y, --yes

	Assume the answer to interactive questions is yes.

	-v, --verbose

	Make more noise! (useful during debugging)

	-h, --help

	Show this message and exit.

One thing to note is that the operation of deb-pkg-tools --update-repo can
be influenced by a configuration file. For details about this, please refer to
the documentation on deb_pkg_tools.repo.select_gpg_key() [https://deb-pkg-tools.readthedocs.io/en/latest/#deb_pkg_tools.repo.select_gpg_key].

Dependencies

The following external programs are required by deb-pkg-tools (depending on
which functionality you want to use of course):

	Program

	Package

	apt-ftparchive

	apt-utils

	apt-get

	apt

	cp

	coreutils

	dpkg-deb

	dpkg

	dpkg-architecture

	dpkg-dev

	du

	coreutils

	fakeroot

	fakeroot

	gpg

	gnupg

	gzip

	gzip

	lintian

	lintian

The majority of these programs/packages will already be installed on most
Debian based systems so you should only need the following to get started:

$ sudo apt-get install dpkg-dev fakeroot lintian

Platform compatibility

Several things can be tweaked via environment variables if they don’t work for
your system or platform. For example on Mac OS X the cp command doesn’t
have an -l parameter and the root user and group may not exist, but
despite these things it can still be useful to test package builds on Mac OS
X. The following environment variables can be used to adjust such factors:

	Environment variable

	Default value

	$DPT_ALLOW_FAKEROOT_OR_SUDO [https://deb-pkg-tools.readthedocs.io/en/latest/#deb_pkg_tools.package.ALLOW_FAKEROOT_OR_SUDO]

	true

	$DPT_CHOWN_FILES [https://deb-pkg-tools.readthedocs.io/en/latest/#deb_pkg_tools.package.ALLOW_CHOWN]

	true

	$DPT_FORCE_ENTROPY [https://deb-pkg-tools.readthedocs.io/en/latest/#deb_pkg_tools.gpg.FORCE_ENTROPY]

	false

	$DPT_HARD_LINKS [https://deb-pkg-tools.readthedocs.io/en/latest/#deb_pkg_tools.package.ALLOW_HARD_LINKS]

	true

	$DPT_PARSE_STRICT [https://deb-pkg-tools.readthedocs.io/en/latest/#deb_pkg_tools.package.PARSE_STRICT]

	true

	$DPT_RESET_SETGID [https://deb-pkg-tools.readthedocs.io/en/latest/#deb_pkg_tools.package.ALLOW_RESET_SETGID]

	true

	$DPT_ROOT_GROUP [https://deb-pkg-tools.readthedocs.io/en/latest/#deb_pkg_tools.package.ROOT_GROUP]

	root

	$DPT_ROOT_USER [https://deb-pkg-tools.readthedocs.io/en/latest/#deb_pkg_tools.package.ROOT_USER]

	root

	$DPT_SUDO [https://deb-pkg-tools.readthedocs.io/en/latest/#deb_pkg_tools.repo.ALLOW_SUDO]

	true

Environment variables for boolean options support the strings yes,
true, 1, no, false and 0 (case is ignored).

Disabling sudo usage

To disable any use of sudo you can use the following:

export DPT_ALLOW_FAKEROOT_OR_SUDO=false
export DPT_CHOWN_FILES=false
export DPT_RESET_SETGID=false
export DPT_SUDO=false

Contact

The latest version of deb-pkg-tools is available on PyPI [https://pypi.python.org/pypi/deb-pkg-tools] and GitHub [https://github.com/xolox/python-deb-pkg-tools]. The
documentation is hosted on Read the Docs [https://deb-pkg-tools.readthedocs.io]. For bug reports please create an
issue on GitHub [https://github.com/xolox/python-deb-pkg-tools]. If you have questions, suggestions, etc. feel free to send me
an e-mail at peter@peterodding.com.

License

This software is licensed under the MIT license [http://en.wikipedia.org/wiki/MIT_License].

© 2020 Peter Odding.

API documentation

The following documentation is based on the source code of version 8.4
of the deb-pkg-tools package. The following modules are available:

	deb_pkg_tools.cache

	Internals

	deb_pkg_tools.checks

	deb_pkg_tools.cli

	deb_pkg_tools.config

	deb_pkg_tools.control

	deb_pkg_tools.deb822

	deb_pkg_tools.deps

	deb_pkg_tools.gpg

	GnuPG 2.1 compatibility

	Storage of secret keys

	Unattended key generation

	deb_pkg_tools.package

	deb_pkg_tools.repo

	deb_pkg_tools.utils

	deb_pkg_tools.version

	deb_pkg_tools.version.native

Note

Most of the functions defined by deb-pkg-tools depend on external
programs. If these programs fail unexpectedly (end with a nonzero exit code)
executor.ExternalCommandFailed [https://executor.readthedocs.io/en/latest/api.html#executor.ExternalCommandFailed] is raised.

deb_pkg_tools.cache

Debian binary package metadata cache.

The PackageCache class implements a persistent, multiprocess cache for
Debian binary package metadata. The cache supports the following binary package
metadata:

	The control fields of packages;

	The files installed by packages;

	The MD5, SHA1 and SHA256 sums of packages.

The package metadata cache can speed up the following functions:

	collect_related_packages()

	get_packages_entry()

	inspect_package()

	inspect_package_contents()

	inspect_package_fields()

	scan_packages()

	update_repository()

Because a lot of functionality in deb-pkg-tools uses
inspect_package() and its variants, the package metadata cache
almost always provides a speedup compared to recalculating metadata on demand.

The cache is especially useful when you’re manipulating large package
repositories where relatively little metadata changes (which is a pretty common
use case if you’re using deb-pkg-tools seriously).

Internals

For several years the package metadata cache was based on SQLite and this
worked fine. Then I started experimenting with concurrent builds on the same
build server and I ran into SQLite raising lock timeout errors. I switched
SQLite to use the Write-Ahead Log (WAL) and things seemed to improve until
I experienced several corrupt databases in situations where multiple writers
and multiple readers were all hitting the cache at the same time.

At this point I looked around for alternative cache backends with the following
requirements:

	Support for concurrent reading and writing without any locking or blocking.

	It should not be possible to corrupt the cache, regardless of concurrency.

	To keep system requirements to a minimum, it should not be required to have
a server (daemon) process running just for the cache to function.

These conflicting requirements left me with basically no options :-). Based on
previous good experiences I decided to try using the filesystem to store the
cache, with individual files representing cache entries. Through atomic
filesystem operations this strategy basically delegates all locking to the
filesystem, which should be guaranteed to do the right thing (POSIX).

Storing the cache on the filesystem like this has indeed appeared to solve all
locking and corruption issues, but when the filesystem cache is cold (for
example because you’ve just run a couple of heavy builds) it’s still damn slow
to scan the package metadata of a full repository with hundreds of archives…

As a pragmatic performance optimization memcached [https://manpages.debian.org/memcached] was added to the mix.
Any errors involving memcached are silently ignored which means memcached isn’t
required to use the cache; it’s an optional optimization.

	
deb_pkg_tools.cache.CACHE_FORMAT_REVISION = 2

	The version number of the cache format (an integer).

	
deb_pkg_tools.cache.get_default_cache()

	Load the default package cache stored inside the user’s home directory.

The location of the cache is configurable using the option
package_cache_directory, however make sure you set that option
before calling get_default_cache() because the cache will be
initialized only once.

	Returns

	A PackageCache object.

	
class deb_pkg_tools.cache.PackageCache(directory)

	A persistent, multiprocess cache for Debian binary package metadata.

	
__init__(directory)

	Initialize a package cache.

	Parameters

	directory – The pathname of the package cache directory (a string).

	
__getstate__()

	Save a pickle [https://docs.python.org/3/library/pickle.html#module-pickle] compatible PackageCache representation.

The __getstate__() and __setstate__() methods make
PackageCache objects compatible with multiprocessing [https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing]
(which uses pickle [https://docs.python.org/3/library/pickle.html#module-pickle]). This capability is used by
deb_pkg_tools.cli.collect_packages() to
enable concurrent package collection.

	
__setstate__(state)

	Load a pickle [https://docs.python.org/3/library/pickle.html#module-pickle] compatible PackageCache representation.

	
connect_memcached()

	Initialize a connection to the memcached daemon.

	
get_entry(category, pathname)

	Get an object representing a cache entry.

	Parameters

	
	category – The type of metadata that this cache entry represents
(a string like ‘control-fields’, ‘package-fields’ or
‘contents’).

	pathname – The pathname of the package archive (a string).

	Returns

	A CacheEntry object.

	
collect_garbage(force=False, interval=86400)

	Delete any entries in the persistent cache that refer to deleted archives.

	Parameters

	
	force – True [https://docs.python.org/3/library/constants.html#True] to force a full garbage collection run
(defaults to False [https://docs.python.org/3/library/constants.html#False] which means garbage collection
is performed only once per interval).

	interval – The number of seconds to delay garbage collection when
force is False [https://docs.python.org/3/library/constants.html#False] (a number, defaults to the
equivalent of 24 hours).

	
class deb_pkg_tools.cache.CacheEntry(cache, category, pathname)

	An entry in the package metadata cache provided by PackageCache.

	
__init__(cache, category, pathname)

	Initialize a CacheEntry object.

	Parameters

	
	cache – The PackageCache that created this entry.

	category – The type of metadata that this cache entry represents
(a string like ‘control-fields’, ‘package-fields’ or
‘contents’).

	pathname – The pathname of the package archive (a string).

	
get_value()

	Get the cache entry’s value.

	Returns

	A previously cached value or None [https://docs.python.org/3/library/constants.html#None] (when the value
isn’t available in the cache).

	
set_value(value)

	Set the cache entry’s value.

	Parameters

	value – The metadata to save in the cache.

	
set_memcached()

	Helper for get_value() and set_value() to write to memcached.

	
up_to_date(value)

	Helper for get_value() to validate cached values.

	
write_file(filename)

	Helper for set_value() to cache values on the filesystem.

deb_pkg_tools.checks

Static analysis of Debian binary packages to detect common problems.

The deb_pkg_tools.checks module attempts to detect common problems in
Debian binary package archives using static analysis. Currently there’s a check
that detects duplicate files in dependency sets and a check that detects
version conflicts in repositories.

	
deb_pkg_tools.checks.check_package(archive, cache=None)

	Perform static checks on a package’s dependency set.

	Parameters

	
	archive – The pathname of an existing *.deb archive (a string).

	cache – The PackageCache to use (defaults to None [https://docs.python.org/3/library/constants.html#None]).

	Raises

	BrokenPackage when one or more checks failed.

	
deb_pkg_tools.checks.check_duplicate_files(dependency_set, cache=None)

	Check a collection of Debian package archives for conflicts.

	Parameters

	
	dependency_set – A list of filenames (strings) of *.deb files.

	cache – The PackageCache to use (defaults to None [https://docs.python.org/3/library/constants.html#None]).

	Raises

	exceptions.ValueError [https://docs.python.org/2/library/exceptions.html#exceptions.ValueError] when less than two package
archives are given (the duplicate check obviously only works if
there are packages to compare :-).

	Raises

	DuplicateFilesFound when duplicate files are found
within a group of package archives.

This check looks for duplicate files in package archives that concern
different packages. Ignores groups of packages that have their ‘Provides’
and ‘Replaces’ fields set to a common value. Other variants of ‘Conflicts’
are not supported yet.

Because this analysis involves both the package control file fields and the
pathnames of files installed by packages it can be really slow. To make it
faster you can use the PackageCache.

	
deb_pkg_tools.checks.check_version_conflicts(dependency_set, cache=None)

	Check for version conflicts in a dependency set.

	Parameters

	
	dependency_set – A list of filenames (strings) of *.deb files.

	cache – The PackageCache to use (defaults to None [https://docs.python.org/3/library/constants.html#None]).

	Raises

	VersionConflictFound when one or more version
conflicts are found.

For each Debian binary package archive given, check if a newer version of
the same package exists in the same repository (directory). This analysis
can be very slow. To make it faster you can use the
PackageCache.

	
exception deb_pkg_tools.checks.BrokenPackage

	Base class for exceptions raised by the checks defined in deb_pkg_tools.checks.

	
exception deb_pkg_tools.checks.DuplicateFilesFound

	Raised by check_duplicate_files() when duplicates are found.

	
exception deb_pkg_tools.checks.VersionConflictFound

	Raised by check_version_conflicts() when version conflicts are found.

deb_pkg_tools.cli

Usage: deb-pkg-tools [OPTIONS] …

Wrapper for the deb-pkg-tools Python project that implements various tools to
inspect, build and manipulate Debian binary package archives and related
entities like trivial repositories.

Supported options:

	Option

	Description

	-i, --inspect=FILE

	Inspect the metadata in the Debian binary package archive given by FILE
(similar to “dpkg --info”).

	-c, --collect=DIR

	Copy the package archive(s) given as positional arguments (and all package
archives required by the given package archives) into the directory given
by DIR.

	-C, --check=FILE

	Perform static analysis on a package archive and its dependencies in order
to recognize common errors as soon as possible.

	-p, --patch=FILE

	Patch fields into the existing control file given by FILE. To be used
together with the -s, --set option.

	-s, --set=LINE

	A line to patch into the control file (syntax: “Name: Value”). To be used
together with the -p, --patch option.

	-b, --build=DIR

	Build a Debian binary package with “dpkg-deb --build” (and lots of
intermediate Python magic, refer to the API documentation of the project
for full details) based on the binary package template in the directory
given by DIR. The resulting archive is located in the system wide
temporary directory (usually /tmp).

	-u, --update-repo=DIR

	Create or update the trivial Debian binary package repository in the
directory given by DIR.

	-a, --activate-repo=DIR

	Enable “apt-get” to install packages from the trivial repository (requires
root/sudo privilege) in the directory given by DIR. Alternatively you can
use the -w, --with-repo option.

	-d, --deactivate-repo=DIR

	Cleans up after --activate-repo (requires root/sudo privilege).
Alternatively you can use the -w, --with-repo option.

	-w, --with-repo=DIR

	Create or update a trivial package repository, activate the repository, run
the positional arguments as an external command (usually “apt-get install”)
and finally deactivate the repository.

	--gc, --garbage-collect

	Force removal of stale entries from the persistent (on disk) package
metadata cache. Garbage collection is performed automatically by the
deb-pkg-tools command line interface when the last garbage collection
cycle was more than 24 hours ago, so you only need to do it manually
when you want to control when it happens (for example by a daily
cron job scheduled during idle hours :-).

	-y, --yes

	Assume the answer to interactive questions is yes.

	-v, --verbose

	Make more noise! (useful during debugging)

	-h, --help

	Show this message and exit.

	
deb_pkg_tools.cli.main()

	Command line interface for the deb-pkg-tools program.

	
deb_pkg_tools.cli.show_package_metadata(archive)

	Show the metadata and contents of a Debian archive on the terminal.

	Parameters

	archive – The pathname of an existing *.deb archive (a string).

	
deb_pkg_tools.cli.highlight(text)

	Highlight a piece of text using ANSI escape sequences.

	Parameters

	text – The text to highlight (a string).

	Returns

	The highlighted text (when standard output is connected to a
terminal) or the original text (when standard output is not
connected to a terminal).

	
deb_pkg_tools.cli.collect_packages(archives, directory, prompt=True, cache=None, concurrency=None)

	Interactively copy packages and their dependencies.

	Parameters

	
	archives – An iterable of strings with the filenames of one or more
*.deb files.

	directory – The pathname of a directory where the package archives
and dependencies should be copied to (a string).

	prompt – True [https://docs.python.org/3/library/constants.html#True] (the default) to ask confirmation from the
operator (using a confirmation prompt rendered on the
terminal), False [https://docs.python.org/3/library/constants.html#False] to skip the prompt.

	cache – The PackageCache to use (defaults to None [https://docs.python.org/3/library/constants.html#None]).

	concurrency – Override the number of concurrent processes (defaults
to the number of archives given or to the value of
multiprocessing.cpu_count() [https://docs.python.org/3/library/multiprocessing.html#multiprocessing.cpu_count], whichever is
smaller).

	Raises

	ValueError [https://docs.python.org/2/library/exceptions.html#exceptions.ValueError] when no archives are given.

When more than one archive is given a multiprocessing [https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing] pool is used
to collect related archives concurrently, in order to speed up the process
of collecting large dependency sets.

	
deb_pkg_tools.cli.collect_packages_worker(args)

	Helper for collect_packages() that enables concurrent collection.

	
deb_pkg_tools.cli.smart_copy(src, dst)

	Create a hard link to or copy of a file.

	Parameters

	
	src – The pathname of the source file (a string).

	dst – The pathname of the target file (a string).

This function first tries to create a hard link dst pointing to src and
if that fails it will perform a regular file copy from src to dst. This
is used by collect_packages() in an attempt to conserve disk space
when copying package archives between repositories on the same filesystem.

	
deb_pkg_tools.cli.with_repository_wrapper(directory, command, cache)

	Command line wrapper for deb_pkg_tools.repo.with_repository().

	Parameters

	
	directory – The pathname of a directory with *.deb archives (a
string).

	command – The command to execute (a list of strings).

	cache – The PackageCache to use (defaults to None [https://docs.python.org/3/library/constants.html#None]).

	
deb_pkg_tools.cli.check_directory(argument)

	Make sure a command line argument points to an existing directory.

	Parameters

	argument – The original command line argument.

	Returns

	The absolute pathname of an existing directory.

	
deb_pkg_tools.cli.say(text, *args, **kw)

	Reliably print Unicode strings to the terminal (standard output stream).

deb_pkg_tools.config

Configuration defaults for the deb-pkg-tools package.

	
deb_pkg_tools.config.system_config_directory = '/etc/deb-pkg-tools'

	The pathname of the global (system wide) configuration directory used by deb-pkg-tools (a string).

	
deb_pkg_tools.config.system_cache_directory = '/var/cache/deb-pkg-tools'

	The pathname of the global (system wide) package cache directory (a string).

	
deb_pkg_tools.config.user_config_directory = '/home/docs/.deb-pkg-tools'

	The pathname of the current user’s configuration directory used by deb-pkg-tools (a string).

	Default

	The expanded value of ~/.deb-pkg-tools.

	
deb_pkg_tools.config.user_cache_directory = '/home/docs/.cache/deb-pkg-tools'

	The pathname of the current user’s package cache directory (a string).

	Default

	The expanded value of ~/.cache/deb-pkg-tools.

	
deb_pkg_tools.config.package_cache_directory = '/home/docs/.cache/deb-pkg-tools'

	The pathname of the selected package cache directory (a string).

	Default

	The value of system_cache_directory when running as root,
the value of user_cache_directory otherwise.

	
deb_pkg_tools.config.repo_config_file = 'repos.ini'

	The base name of the configuration file with user-defined Debian package repositories (a string).

This configuration file is loaded from system_config_directory and/or
user_config_directory.

	Default

	The string repos.ini.

deb_pkg_tools.control

Functions to manipulate Debian control files.

The functions in the deb_pkg_tools.control module can be used to
manipulate Debian control files. It was developed specifically for control
files of binary packages, however the code is very generic.

This module makes extensive use of case insensitivity provided by the
humanfriendly.case [https://humanfriendly.readthedocs.io/en/latest/api.html#module-humanfriendly.case] module:

	The dictionaries returned by this module are case insensitive.

	The enumerations MANDATORY_BINARY_CONTROL_FIELDS and
DEPENDS_LIKE_FIELDS contain case insensitive strings.

Case insensitivity was originally added to this module by virtue of its
integration with python-debian [https://pypi.org/project/python-debian/]. Since then this dependency was
removed but the case insensitive behavior was preserved for the sake
of backwards compatibility.

Note

Deprecated names

The following aliases exist to preserve backwards compatibility, however a DeprecationWarning [https://docs.python.org/2/library/exceptions.html#exceptions.DeprecationWarning] is triggered when they are accessed, because these aliases will be removed in a future release.

	
deb_pkg_tools.control.deb822_from_string

	Alias for deb_pkg_tools.deb822.parse_deb822.

	
deb_pkg_tools.control.Deb822

	Alias for deb_pkg_tools.deb822.Deb822.

	
deb_pkg_tools.control.MANDATORY_BINARY_CONTROL_FIELDS = (u'Architecture', u'Description', u'Maintainer', u'Package', u'Version')

	A tuple of strings (actually CaseInsensitiveKey [https://humanfriendly.readthedocs.io/en/latest/api.html#humanfriendly.case.CaseInsensitiveKey]
objects) with the canonical names of the mandatory binary control file fields
as defined by the Debian policy manual [https://www.debian.org/doc/debian-policy/ch-controlfields.html#s-binarycontrolfiles].

	
deb_pkg_tools.control.DEFAULT_CONTROL_FIELDS = {u'Architecture': 'all', u'Priority': 'optional', u'Section': 'misc'}

	A case insensitive dictionary with string key/value pairs. Each key is the
canonical name of a binary control file field and each value is the default
value given to that field by create_control_file() when the caller
hasn’t defined a value for the field.

	
deb_pkg_tools.control.DEPENDS_LIKE_FIELDS = (u'Breaks', u'Conflicts', u'Depends', u'Enhances', u'Pre-Depends', u'Provides', u'Recommends', u'Replaces', u'Suggests', u'Build-Conflicts', u'Build-Conflicts-Arch', u'Build-Conflicts-Indep', u'Build-Depends', u'Build-Depends-Arch', u'Build-Depends-Indep', u'Built-Using')

	A tuple of strings with the canonical names of control file fields that are
similar to the Depends field (in the sense that they contain a comma
separated list of package names with optional version specifications).

	
deb_pkg_tools.control.SPECIAL_CASES = {'md5sum': 'MD5sum', 'sha1': 'SHA1', 'sha256': 'SHA256'}

	A dictionary with string key/value pairs of non-default casing for words that
are part of control field names. The keys are intentionally normalized to
lowercase, whereas the values contain the proper casing. Used by
normalize_control_field_name().

	
deb_pkg_tools.control.load_control_file(control_file)

	Load a control file and return the parsed control fields.

	Parameters

	control_file – The filename of the control file to load (a string).

	Returns

	A dictionary created by parse_control_fields().

	
deb_pkg_tools.control.create_control_file(control_file, control_fields)

	Create a Debian control file.

	Parameters

	
	control_file – The filename of the control file to create (a string).

	control_fields – A dictionary with control file fields. This
dictionary is merged with the values in
DEFAULT_CONTROL_FIELDS.

	Raises

	See check_mandatory_fields().

	
deb_pkg_tools.control.check_mandatory_fields(control_fields)

	Make sure mandatory binary control fields are defined.

	Parameters

	control_fields – A dictionary with control file fields.

	Raises

	ValueError [https://docs.python.org/2/library/exceptions.html#exceptions.ValueError] when a mandatory binary control
field is not present in the provided control fields (see also
MANDATORY_BINARY_CONTROL_FIELDS).

	
deb_pkg_tools.control.patch_control_file(control_file, overrides)

	Patch the fields of a Debian control file.

	Parameters

	
	control_file – The filename of the control file to patch (a string).

	overrides – A dictionary with fields that should override default
name/value pairs. Values of the fields Depends,
Provides, Replaces and Conflicts are merged
while values of other fields are overwritten.

	
deb_pkg_tools.control.merge_control_fields(defaults, overrides)

	Merge the fields of two Debian control files.

	Parameters

	
	defaults – A dictionary with existing control field name/value pairs.

	overrides – A dictionary with fields that should override default
name/value pairs. Values of the fields Depends,
Provides, Replaces and Conflicts are merged
while values of other fields are overwritten.

	Returns

	A dictionary of the type Deb822.

	
deb_pkg_tools.control.parse_control_fields(input_fields)

	Parse Debian control file fields.

	Parameters

	input_fields – The dictionary to convert.

	Returns

	A dictionary of the type Deb822.

This function takes the result of the shallow parsing of control fields
performed by parse_deb822() and massages the data into a
friendlier format:

	The values of the fields given by DEPENDS_LIKE_FIELDS are parsed
into Python data structures using parse_depends().

	The value of the Installed-Size field is converted to an integer.

Let’s look at an example. We start with the raw control file contents so
you can see the complete input:

>>> from deb_pkg_tools.deb822 import parse_deb822
>>> unparsed_fields = parse_deb822('''
... Package: python3.4-minimal
... Version: 3.4.0-1+precise1
... Architecture: amd64
... Installed-Size: 3586
... Pre-Depends: libc6 (>= 2.15)
... Depends: libpython3.4-minimal (= 3.4.0-1+precise1), libexpat1 (>= 1.95.8), libgcc1 (>= 1:4.1.1), zlib1g (>= 1:1.2.0), foo | bar
... Recommends: python3.4
... Suggests: binfmt-support
... Conflicts: binfmt-support (<< 1.1.2)
... ''')

Here are the control file fields as parsed by parse_deb822():

>>> print(repr(unparsed_fields))
{'Architecture': u'amd64',
 'Conflicts': u'binfmt-support (<< 1.1.2)',
 'Depends': u'libpython3.4-minimal (= 3.4.0-1+precise1), libexpat1 (>= 1.95.8), libgcc1 (>= 1:4.1.1), zlib1g (>= 1:1.2.0), foo | bar',
 'Installed-Size': u'3586',
 'Package': u'python3.4-minimal',
 'Pre-Depends': u'libc6 (>= 2.15)',
 'Recommends': u'python3.4',
 'Suggests': u'binfmt-support',
 'Version': u'3.4.0-1+precise1'}

Notice the value of the Depends line is a comma separated string, i.e. it
hasn’t been parsed. Now here are the control file fields parsed by the
parse_control_fields() function:

>>> from deb_pkg_tools.control import parse_control_fields
>>> parsed_fields = parse_control_fields(unparsed_fields)
>>> print(repr(parsed_fields))
{'Architecture': u'amd64',
 'Conflicts': RelationshipSet(VersionedRelationship(name=u'binfmt-support', operator=u'<<', version=u'1.1.2')),
 'Depends': RelationshipSet(VersionedRelationship(name=u'libpython3.4-minimal', operator=u'=', version=u'3.4.0-1+precise1'),
 VersionedRelationship(name=u'libexpat1', operator=u'>=', version=u'1.95.8'),
 VersionedRelationship(name=u'libgcc1', operator=u'>=', version=u'1:4.1.1'),
 VersionedRelationship(name=u'zlib1g', operator=u'>=', version=u'1:1.2.0'),
 AlternativeRelationship(Relationship(name=u'foo'), Relationship(name=u'bar'))),
 'Installed-Size': 3586,
 'Package': u'python3.4-minimal',
 'Pre-Depends': RelationshipSet(VersionedRelationship(name=u'libc6', operator=u'>=', version=u'2.15')),
 'Recommends': u'python3.4',
 'Suggests': RelationshipSet(Relationship(name=u'binfmt-support')),
 'Version': u'3.4.0-1+precise1'}

For more information about fields like Depends and Suggests please
refer to the documentation of parse_depends().

	
deb_pkg_tools.control.unparse_control_fields(input_fields)

	Unparse (undo the parsing of) Debian control file fields.

	Parameters

	input_fields – A dict [https://docs.python.org/3/library/stdtypes.html#dict] object previously returned by
parse_control_fields().

	Returns

	A dictionary of the type Deb822.

This function converts dictionaries created by
parse_control_fields() back into shallow dictionaries of strings.
Fields with an empty value are omitted. This makes it possible to delete
fields from a control file with patch_control_file() by setting the
value of a field to None [https://docs.python.org/3/library/constants.html#None] in the overrides…

	
deb_pkg_tools.control.normalize_control_field_name(name)

	Normalize the case of a field name in a Debian control file.

	Parameters

	name – The name of a control file field (a string).

	Returns

	The normalized name (a string of the type CaseInsensitiveKey [https://humanfriendly.readthedocs.io/en/latest/api.html#humanfriendly.case.CaseInsensitiveKey]).

Normalization of control file field names is useful to simplify control
file manipulation and in particular the merging of control files.

According to the Debian Policy Manual (section 5.1, Syntax of control
files [http://www.debian.org/doc/debian-policy/ch-controlfields.html#s-controlsyntax]) field names are not case-sensitive, however in my experience
deviating from the standard capitalization can break things. Hence this
function (which is used by the other functions in the
deb_pkg_tools.control module).

Note

This function doesn’t adhere 100% to the Debian policy because it
lacks special casing (no pun intended ;-) for fields like
DM-Upload-Allowed. It’s not clear to me if this will ever
become a relevant problem for building simple binary packages…
(which explains why I didn’t bother to implement special casing)

deb_pkg_tools.deb822

Parsing and formatting of Debian control fields in the deb822 [https://manpages.debian.org/deb822] format.

	
deb_pkg_tools.deb822.dump_deb822(fields)

	Format the given Debian control fields as text.

	Parameters

	fields – The control fields to dump (a dictionary).

	Returns

	A Unicode string containing the formatted control fields.

	
deb_pkg_tools.deb822.parse_deb822(text, filename=None)

	Parse Debian control fields into a Deb822 object.

	Parameters

	
	text – A string containing the control fields to parse.

	filename – An optional string with the filename of the source file
from which the control fields were extracted (only used
for the purpose of error reporting).

	Returns

	A Deb822 object.

	
class deb_pkg_tools.deb822.Deb822(other=None, **kw)

	Case insensitive dictionary to represent the fields of a parsed deb822 [https://manpages.debian.org/deb822] paragraph.

This class imitates the class of the same name in the python-debian [https://pypi.org/project/python-debian/]
package, primarily in the form of the dump() method, however that’s
also where the similarities end (full compatibility is not a goal).

	
dump(handle=None)

	Dump the control fields to a file.

	Parameters

	handle – A file-like object or None [https://docs.python.org/3/library/constants.html#None].

	Returns

	If handle is None [https://docs.python.org/3/library/constants.html#None] the dumped control fields are
returned as a Unicode string.

	
__eq__(other)

	Compare two Deb822 objects while ignoring differences in the order of keys.

deb_pkg_tools.deps

Parsing and evaluation of Debian package relationship declarations.

The deb_pkg_tools.deps module provides functions to parse and evaluate
Debian package relationship declarations as defined in chapter 7 [http://www.debian.org/doc/debian-policy/ch-relationships.html#s-depsyntax] of the
Debian policy manual. The most important function is parse_depends()
which returns a RelationshipSet object. The
RelationshipSet.matches() method can be used to evaluate relationship
expressions. The relationship parsing is implemented in pure Python (no
external dependencies) but relationship evaluation uses the external command
dpkg --compare-versions to ensure compatibility with Debian’s package
version comparison algorithm.

To give you an impression of how to use this module:

>>> from deb_pkg_tools.deps import parse_depends
>>> dependencies = parse_depends('python (>= 2.6), python (<< 3) | python (>= 3.4)')
>>> dependencies.matches('python', '2.5')
False
>>> dependencies.matches('python', '3.0')
False
>>> dependencies.matches('python', '2.6')
True
>>> dependencies.matches('python', '3.4')
True
>>> print(repr(dependencies))
RelationshipSet(VersionedRelationship(name='python', operator='>=', version='2.6', architectures=()),
 AlternativeRelationship(VersionedRelationship(name='python', operator='<<', version='3', architectures=()),
 VersionedRelationship(name='python', operator='>=', version='3.4', architectures=())))
>>> print(str(dependencies))
python (>= 2.6), python (<< 3) | python (>= 3.4)

As you can see the repr() [https://docs.python.org/3/library/functions.html#repr] output of the relationship set shows the
object tree and the str [https://docs.python.org/3/library/stdtypes.html#str] output is the dependency line.

	
deb_pkg_tools.deps.parse_depends(relationships)

	Parse a Debian package relationship declaration line.

	Parameters

	relationships – A string containing one or more comma separated
package relationships or a list of strings with
package relationships.

	Returns

	A RelationshipSet object.

	Raises

	ValueError [https://docs.python.org/2/library/exceptions.html#exceptions.ValueError] when parsing fails.

This function parses a list of package relationships of the form python
(>= 2.6), python (<< 3), i.e. a comma separated list of relationship
expressions. Uses parse_alternatives() to parse each comma
separated expression.

Here’s an example:

>>> from deb_pkg_tools.deps import parse_depends
>>> dependencies = parse_depends('python (>= 2.6), python (<< 3)')
>>> print(repr(dependencies))
RelationshipSet(VersionedRelationship(name='python', operator='>=', version='2.6'),
 VersionedRelationship(name='python', operator='<<', version='3'))
>>> dependencies.matches('python', '2.5')
False
>>> dependencies.matches('python', '2.6')
True
>>> dependencies.matches('python', '2.7')
True
>>> dependencies.matches('python', '3.0')
False

	
deb_pkg_tools.deps.parse_alternatives(expression)

	Parse an expression containing one or more alternative relationships.

	Parameters

	expression – A relationship expression (a string).

	Returns

	A Relationship object.

	Raises

	ValueError [https://docs.python.org/2/library/exceptions.html#exceptions.ValueError] when parsing fails.

This function parses an expression containing one or more alternative
relationships of the form python2.6 | python2.7., i.e. a list of
relationship expressions separated by | tokens. Uses
parse_relationship() to parse each | separated expression.

An example:

>>> from deb_pkg_tools.deps import parse_alternatives
>>> parse_alternatives('python2.6')
Relationship(name='python2.6')
>>> parse_alternatives('python2.6 | python2.7')
AlternativeRelationship(Relationship(name='python2.6'),
 Relationship(name='python2.7'))

	
deb_pkg_tools.deps.parse_relationship(expression)

	Parse an expression containing a package name and optional version/architecture restrictions.

	Parameters

	expression – A relationship expression (a string).

	Returns

	A Relationship object.

	Raises

	ValueError [https://docs.python.org/2/library/exceptions.html#exceptions.ValueError] when parsing fails.

This function parses relationship expressions containing a package name and
(optionally) a version relation of the form python (>= 2.6) and/or an
architecture restriction (refer to the Debian policy manual’s documentation
on the syntax of relationship fields [https://www.debian.org/doc/debian-policy/ch-relationships.html] for details). Here’s an example:

>>> from deb_pkg_tools.deps import parse_relationship
>>> parse_relationship('python')
Relationship(name='python')
>>> parse_relationship('python (<< 3)')
VersionedRelationship(name='python', operator='<<', version='3')

	
deb_pkg_tools.deps.cache_matches(f)

	High performance memoizing decorator for overrides of Relationship.matches().

Before writing this function I tried out several caching decorators from
PyPI, unfortunately all of them were bloated. I benchmarked using
collect_related_packages() and where this decorator would get a
total runtime of 8 seconds the other caching decorators would get
something like 40 seconds…

	
class deb_pkg_tools.deps.AbstractRelationship(**kw)

	Abstract base class for the various types of relationship objects defined in deb_pkg_tools.deps.

	
names

	The name(s) of the packages in the relationship.

	Returns

	A set of package names (strings).

Note

This property needs to be implemented by subclasses.

	
matches(name, version=None)

	Check if the relationship matches a given package and version.

	Parameters

	
	name – The name of a package (a string).

	version – The version number of a package (a string, optional).

	Returns

	One of the values True [https://docs.python.org/3/library/constants.html#True], False [https://docs.python.org/3/library/constants.html#False] or None [https://docs.python.org/3/library/constants.html#None]
meaning the following:

	True [https://docs.python.org/3/library/constants.html#True] if the name matches and the version
doesn’t invalidate the match,

	False [https://docs.python.org/3/library/constants.html#False] if the name matches but the version
invalidates the match,

	None [https://docs.python.org/3/library/constants.html#None] if the name doesn’t match at all.

Note

This method needs to be implemented by subclasses.

	
class deb_pkg_tools.deps.Relationship(**kw)

	A simple package relationship referring only to the name of a package.

Created by parse_relationship().

	
name

	The name of a package (a string).

Note

The name property is a key_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.key_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named name (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). Once this property has been assigned a value you are not allowed to assign a new value to the property.

	
architectures

	The architecture restriction(s) on the relationship (a tuple of strings).

Note

The architectures property is a key_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.key_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named architectures (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). Once this property has been assigned a value you are not allowed to assign a new value to the property.

	
names

	The name(s) of the packages in the relationship.

	
matches(name, version=None)

	Check if the relationship matches a given package name.

	Parameters

	
	name – The name of a package (a string).

	version – The version number of a package (this parameter is ignored).

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the name matches, None [https://docs.python.org/3/library/constants.html#None] otherwise.

	Raises

	NotImplementedError [https://docs.python.org/2/library/exceptions.html#exceptions.NotImplementedError] when architectures
is not empty (because evaluation of architecture restrictions
hasn’t been implemented).

	
__repr__()

	Serialize a Relationship object to a Python expression.

	
__unicode__()

	Serialize a Relationship object to a Debian package relationship expression.

	
class deb_pkg_tools.deps.VersionedRelationship(**kw)

	A conditional package relationship that refers to a package and certain versions of that package.

Created by parse_relationship().

	
operator

	An operator that compares Debian package version numbers (a string).

Note

The operator property is a key_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.key_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named operator (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). Once this property has been assigned a value you are not allowed to assign a new value to the property.

	
version

	The version number of a package (a string).

Note

The version property is a key_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.key_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named version (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). Once this property has been assigned a value you are not allowed to assign a new value to the property.

	
matches(package, version=None)

	Check if the relationship matches a given package name and version.

	Parameters

	
	name – The name of a package (a string).

	version – The version number of a package (a string, optional).

	Returns

	One of the values True [https://docs.python.org/3/library/constants.html#True], False [https://docs.python.org/3/library/constants.html#False] or None [https://docs.python.org/3/library/constants.html#None]
meaning the following:

	True [https://docs.python.org/3/library/constants.html#True] if the name matches and the version
doesn’t invalidate the match,

	False [https://docs.python.org/3/library/constants.html#False] if the name matches but the version
invalidates the match,

	None [https://docs.python.org/3/library/constants.html#None] if the name doesn’t match at all.

	Raises

	NotImplementedError [https://docs.python.org/2/library/exceptions.html#exceptions.NotImplementedError] when
architectures is not empty (because
evaluation of architecture restrictions hasn’t been
implemented).

Uses the external command dpkg --compare-versions to ensure
compatibility with Debian’s package version comparison algorithm.

	
__repr__()

	Serialize a VersionedRelationship object to a Python expression.

	
__unicode__()

	Serialize a VersionedRelationship object to a Debian package relationship expression.

	
class deb_pkg_tools.deps.AlternativeRelationship(*relationships)

	A package relationship that refers to one of several alternative packages.

Created by parse_alternatives().

	
__init__(*relationships)

	Initialize an AlternativeRelationship object.

	Parameters

	relationships – One or more Relationship objects.

	
relationships

	A tuple of Relationship objects.

Note

The relationships property is a key_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.key_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named relationships (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). Once this property has been assigned a value you are not allowed to assign a new value to the property.

	
names

	Get the name(s) of the packages in the alternative relationship.

	Returns

	A set of package names (strings).

	
matches(package, version=None)

	Check if the relationship matches a given package and version.

	Parameters

	
	name – The name of a package (a string).

	version – The version number of a package (a string, optional).

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the name and version of an alternative match,
False [https://docs.python.org/3/library/constants.html#False] if the name of an alternative was matched but the
version didn’t match, None [https://docs.python.org/3/library/constants.html#None] otherwise.

	
__repr__()

	Serialize an AlternativeRelationship object to a Python expression.

	
__unicode__()

	Serialize an AlternativeRelationship object to a Debian package relationship expression.

	
class deb_pkg_tools.deps.RelationshipSet(*relationships)

	A set of package relationships. Created by parse_depends().

	
__init__(*relationships)

	Initialize a :class RelationshipSet object.

	Parameters

	relationships – One or more Relationship objects.

	
relationships

	A tuple of Relationship objects.

Note

The relationships property is a key_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.key_property]. You are required to provide a value for this property by calling the constructor of the class that defines the property with a keyword argument named relationships (unless a custom constructor is defined, in this case please refer to the documentation of that constructor). Once this property has been assigned a value you are not allowed to assign a new value to the property.

	
names

	Get the name(s) of the packages in the relationship set.

	Returns

	A set of package names (strings).

	
matches(package, version=None)

	Check if the set of relationships matches a given package and version.

	Parameters

	
	name – The name of a package (a string).

	version – The version number of a package (a string, optional).

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if all matched relationships evaluate to true,
False [https://docs.python.org/3/library/constants.html#False] if a relationship is matched and evaluates to false,
None [https://docs.python.org/3/library/constants.html#None] otherwise.

Warning

Results are cached in the assumption that
RelationshipSet objects are
immutable. This is not enforced.

	
__repr__(pretty=False, indent=0)

	Serialize a RelationshipSet object to a Python expression.

	
__unicode__()

	Serialize a RelationshipSet object to a Debian package relationship expression.

	
__iter__()

	Iterate over the relationships in a relationship set.

deb_pkg_tools.gpg

GPG key pair generation and signing of Release files.

The deb_pkg_tools.gpg module is used to manage GPG key pairs. It allows
callers to specify which GPG key pair and/or key ID they want to use and will
automatically generate GPG key pairs that don’t exist yet.

GnuPG 2.1 compatibility

In 2018 the deb_pkg_tools.gpg module got a major update to enable
compatibility with GnuPG >= 2.1:

	The deb_pkg_tools.gpg module was first integrated into deb-pkg-tools
in 2013 and was developed based on GnuPG 1.4.10 which was the version
included in Ubuntu 10.04.

	Ubuntu 18.04 includes GnuPG 2.2.4 which differs from 1.4.10 in several
backwards incompatible ways that require changes in deb-pkg-tools which
directly affect the users of deb-pkg-tools (the API has changed).

The following sections discuss the concrete changes:

	Storage of secret keys

	Unattended key generation

Storage of secret keys

The storage of secret keys has changed in a backwards incompatible way, such
that the --secret-keyring command line option is now obsolete and ignored.
The GnuPG documentation suggests to use an ephemeral home directory [https://www.gnupg.org/documentation/manuals/gnupg/Ephemeral-home-directories.html#Ephemeral-home-directories] as a
replacement for --secret-keyring. To enable compatibility with GnuPG >= 2.1
while at the same time preserving compatibility with older releases, the
GPGKey class gained a new directory property:

	When GnuPG >= 2.1 is detected directory is required.

	When GnuPG < 2.1 is detected directory may be specified and
will be respected, but you can also use “the old calling convention” where
the public_key_file, secret_key_file and
key_id properties are specified separately.

	The documentation of the GPGKey initializer explains how to enable
compatibility with old and new versions GnuPG versions at the same time
(using the same Python code).

Unattended key generation

The default behavior of gpg --batch --gen-key has changed:

	The user is now presented with a GUI prompt that asks to specify a pass
phrase for the new key, at which point the supposedly unattended key
generation is effectively blocked on user input…

	To avoid the GUI prompt the new %no-protection option needs to be added
to the batch file, but of course that option will not be recognized by older
GnuPG releases, so it needs to be added conditionally.

	
deb_pkg_tools.gpg.FORCE_ENTROPY = False

	True [https://docs.python.org/3/library/constants.html#True] to allow GPGKey.generate_key_pair() to force the system to
generate entropy based on disk I/O , False [https://docs.python.org/3/library/constants.html#False] to disallow this behavior
(the default).

This was added to facilitate the deb-pkg-tools test suite running on Travis CI.
It is assumed that this rather obscure functionality will only ever be useful
in the same context: Running a test suite in a virtualization environment with
very low entropy.

The environment variable $DPT_FORCE_ENTROPY can be used to control the
value of this variable (see coerce_boolean() [https://humanfriendly.readthedocs.io/en/latest/api.html#humanfriendly.coerce_boolean] for
acceptable values).

	
deb_pkg_tools.gpg.GPG_AGENT_VARIABLE = 'GPG_AGENT_INFO'

	The name of the environment variable used to communicate between the GPG agent and gpg [https://manpages.debian.org/gpg] processes (a string).

	
deb_pkg_tools.gpg.create_directory(pathname)

	Create a GnuPG directory with sane permissions (to avoid GnuPG warnings).

	Parameters

	pathname – The directory to create (a string).

	
deb_pkg_tools.gpg.have_updated_gnupg()

	Check which version of GnuPG is installed.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if GnuPG >= 2.1 is installed,
False [https://docs.python.org/3/library/constants.html#False] for older versions.

	
deb_pkg_tools.gpg.initialize_gnupg()

	Make sure the ~/.gnupg directory exists.

Older versions of GPG can/will fail when the ~/.gnupg directory doesn’t
exist (e.g. in a newly created chroot). GPG itself creates the directory
after noticing that it’s missing, but then still fails! Later runs work
fine however. To avoid this problem we make sure ~/.gnupg exists before
we run GPG.

	
class deb_pkg_tools.gpg.GPGKey(**options)

	Container for generating GPG key pairs and signing release files.

This class is used to sign Release files in Debian package
repositories. If the given GPG key pair doesn’t exist yet it will be
automatically created without user interaction (except gathering of
entropy, which is not something I can automate :-).

	
__init__(**options)

	Initialize a GPGKey object.

	Parameters

	options – Refer to the initializer of the superclass
(PropertyManager [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.PropertyManager])
for details about argument handling.

There are two ways to specify the location of a GPG key pair:

	The old way applies to GnuPG < 2.1 and uses public_key_file
and secret_key_file.

	The new way applies to GnuPG >= 2.1 and uses directory.

If you don’t specify anything the user’s default key pair will be used.
Specifying all three properties enables isolation from the user’s
default keyring that’s compatible with old and new GnuPG installations
at the same time.

You can also use key_id to select a specific existing GPG key
pair, possibly in combination with the previously mentioned properties.

When the caller has specified a custom location for the GPG key pair
but the associated files don’t exist yet a new GPG key pair will be
automatically generated. This requires that name and
description have been set.

	
check_key_id()

	Raise EnvironmentError [https://docs.python.org/2/library/exceptions.html#exceptions.EnvironmentError] when a key ID has been specified but the key pair doesn’t exist.

	
check_new_usage()

	Raise an exception when detecting a backwards incompatibility.

	Raises

	TypeError [https://docs.python.org/2/library/exceptions.html#exceptions.TypeError] as described below.

When GnuPG >= 2.1 is installed the check_new_usage() method is
called to make sure that the caller is aware of the changes in API
contract that this implies. We do so by raising an exception when both
of the following conditions hold:

	The caller is using the old calling convention of setting
public_key_file and secret_key_file (which
confirms that the intention is to use an isolated GPG key).

	The caller is not using the new calling convention of setting
directory (even though this is required to use an isolated
GPG key with GnuPG >= 2.1).

	
check_old_files()

	Raise an exception when we risk overwriting an existing public or secret key file.

	Returns

	A list of filenames with existing files.

	Raises

	EnvironmentError [https://docs.python.org/2/library/exceptions.html#exceptions.EnvironmentError] as described below.

When GnuPG < 2.1 is installed check_old_files() is called to
ensure that when public_key_file and secret_key_file
have been provided, either both of the files already exist or neither
one exists. This avoids accidentally overwriting an existing file that
wasn’t generated by deb-pkg-tools and shouldn’t be touched at all.

	
check_old_usage()

	Raise an exception when either the public or the secret key hasn’t been provided.

	Raises

	TypeError [https://docs.python.org/2/library/exceptions.html#exceptions.TypeError] as described below.

When GnuPG < 2.1 is installed check_old_usage() is called
to ensure that public_key_file and secret_key_file
are either both provided or both omitted.

	
generate_key_pair()

	Generate a missing GPG key pair on demand.

	Raises

	TypeError [https://docs.python.org/2/library/exceptions.html#exceptions.TypeError] when the GPG key pair needs to be
generated (because it doesn’t exist yet) but no name
and description were provided.

	
set_old_defaults()

	Fall back to the default public and secret key files for GnuPG < 2.1.

	
batch_script

	A GnuPG batch script suitable for gpg --batch --gen-key (a string).

Note

The batch_script property is a cached_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.cached_property]. This property’s value is computed once (the first time it is accessed) and the result is cached. To clear the cached value you can use del [https://docs.python.org/3/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/3/library/functions.html#delattr].

	
command_name

	The name of the GnuPG program (a string, defaults to gpg [https://manpages.debian.org/gpg]).

Note

The command_name property is a mutable_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property]. You can change the value of this property using normal attribute assignment syntax. To reset it to its default (computed) value you can use del [https://docs.python.org/3/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/3/library/functions.html#delattr].

	
description

	The description of the GPG key pair (a string or None [https://docs.python.org/3/library/constants.html#None]).

Used only when the key pair is generated because it doesn’t exist yet.

Note

The description property is a mutable_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property]. You can change the value of this property using normal attribute assignment syntax. To reset it to its default (computed) value you can use del [https://docs.python.org/3/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/3/library/functions.html#delattr].

	
directory

	The pathname of the GnuPG home directory to use (a string or None [https://docs.python.org/3/library/constants.html#None]).

This property was added in deb-pkg-tools 5.0 to enable compatibility
with GnuPG >= 2.1 which changed the storage of secret keys in a
backwards incompatible way by obsoleting the --secret-keyring
command line option. The GnuPG documentation suggests to use an
ephemeral home directory [https://www.gnupg.org/documentation/manuals/gnupg/Ephemeral-home-directories.html#Ephemeral-home-directories] as a replacement and that’s why the
directory property was added.

Note

The directory property is a mutable_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property]. You can change the value of this property using normal attribute assignment syntax. To reset it to its default (computed) value you can use del [https://docs.python.org/3/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/3/library/functions.html#delattr].

	
directory_default

	The pathname of the default GnuPG home directory (a string).

Note

The directory_default property is a cached_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.cached_property]. This property’s value is computed once (the first time it is accessed) and the result is cached. To clear the cached value you can use del [https://docs.python.org/3/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/3/library/functions.html#delattr].

	
directory_effective

	The pathname of the GnuPG home directory that will actually be used (a string).

Note

The directory_effective property is a cached_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.cached_property]. This property’s value is computed once (the first time it is accessed) and the result is cached. To clear the cached value you can use del [https://docs.python.org/3/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/3/library/functions.html#delattr].

	
existing_files

	A list of strings with the filenames of existing GnuPG data files.

The content of this list depends on the GnuPG version:

	On GnuPG >= 2.1 and/or when directory has been set (also on
GnuPG < 2.1) any files in or below directory are included.

	On GnuPG < 2.1 public_key_file and secret_key_file
are included (only if the properties are set and the files exist of
course).

Note

The existing_files property is a cached_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.cached_property]. This property’s value is computed once (the first time it is accessed) and the result is cached. To clear the cached value you can use del [https://docs.python.org/3/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/3/library/functions.html#delattr].

	
identifier

	A unique identifier for the GPG key pair (a string).

The output of the gpg --list-keys --with-colons command is parsed
to extract a unique identifier for the GPG key pair:

	When a fingerprint is available this is preferred.

	Otherwise a long key ID will be returned (assuming one is available).

	If neither can be extracted EnvironmentError [https://docs.python.org/2/library/exceptions.html#exceptions.EnvironmentError] is raised.

If an isolated key pair is being used the directory option
should be used instead of the public_key_file and
secret_key_file properties, even if GnuPG < 2.1 is being used.
This is necessary because of what appears to be a bug in GnuPG, see
this mailing list thread [https://lists.gnupg.org/pipermail/gnupg-users/2002-March/012144.html] for more discussion.

Note

The identifier property is a cached_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.cached_property]. This property’s value is computed once (the first time it is accessed) and the result is cached. To clear the cached value you can use del [https://docs.python.org/3/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/3/library/functions.html#delattr].

	
gpg_command

	The GPG command line that can be used to sign using the key, export the key, etc (a string).

The value of gpg_command is based on scoped_command
combined with the --no-default-keyring

The documentation of GPGKey.__init__() contains two examples.

	
key_id

	The key ID of an existing key pair to use (a string or None [https://docs.python.org/3/library/constants.html#None]).

If this option is provided then the key pair must already exist.

Note

The key_id property is a mutable_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property]. You can change the value of this property using normal attribute assignment syntax. To reset it to its default (computed) value you can use del [https://docs.python.org/3/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/3/library/functions.html#delattr].

	
name

	The name of the GPG key pair (a string or None [https://docs.python.org/3/library/constants.html#None]).

Used only when the key pair is generated because it doesn’t exist yet.

Note

The name property is a mutable_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property]. You can change the value of this property using normal attribute assignment syntax. To reset it to its default (computed) value you can use del [https://docs.python.org/3/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/3/library/functions.html#delattr].

	
new_usage

	True [https://docs.python.org/3/library/constants.html#True] if the new API is being used, False [https://docs.python.org/3/library/constants.html#False] otherwise.

	
old_usage

	True [https://docs.python.org/3/library/constants.html#True] if the old API is being used, False [https://docs.python.org/3/library/constants.html#False] otherwise.

	
public_key_file

	The pathname of the public key file (a string or None [https://docs.python.org/3/library/constants.html#None]).

This is only used when GnuPG < 2.1 is installed.

Note

The public_key_file property is a mutable_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property]. You can change the value of this property using normal attribute assignment syntax. To reset it to its default (computed) value you can use del [https://docs.python.org/3/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/3/library/functions.html#delattr].

	
scoped_command

	The GPG program name and optional --homedir command line option (a list of strings).

The name of the GPG program is taken from command_name and the
--homedir option is only added when directory is set.

	
secret_key_file

	The pathname of the secret key file (a string or None [https://docs.python.org/3/library/constants.html#None]).

This is only used when GnuPG < 2.1 is installed.

Note

The secret_key_file property is a mutable_property [https://property-manager.readthedocs.io/en/latest/api.html#property_manager.mutable_property]. You can change the value of this property using normal attribute assignment syntax. To reset it to its default (computed) value you can use del [https://docs.python.org/3/reference/simple_stmts.html#del] or delattr() [https://docs.python.org/3/library/functions.html#delattr].

	
use_agent

	Whether to enable the use of the GPG agent [http://linux.die.net/man/1/gpg-agent] (a boolean).

This property checks whether the environment variable given by
GPG_AGENT_VARIABLE is set to a nonempty value. If it is then
gpg_command will include the --use-agent option. This makes
it possible to integrate repository signing with the GPG agent, so that
a password is asked for once instead of every time something is signed.

	
class deb_pkg_tools.gpg.EntropyGenerator

	Force the system to generate entropy based on disk I/O.

The deb-pkg-tools test suite runs on Travis CI which uses virtual
machines to isolate tests. Because the deb-pkg-tools test suite generates
several GPG keys it risks the chance of getting stuck and being killed
after 10 minutes of inactivity. This happens because of a lack of entropy
which is a very common problem in virtualized environments.
There are tricks to use fake entropy to avoid this problem:

	The rng-tools package/daemon can feed /dev/random based on
/dev/urandom. Unfortunately this package doesn’t work on Travis CI
because they use OpenVZ which uses read only /dev/random devices.

	GPG version 2 supports the --debug-quick-random option but I haven’t
investigated how easy it is to switch.

Instances of this class can be used as a context manager to generate
endless disk I/O which is one of the few sources of entropy on virtualized
systems. Entropy generation is enabled when the environment variable
$DPT_FORCE_ENTROPY is set to yes, true or 1.

	
__init__()

	Initialize a EntropyGenerator object.

	
__enter__()

	Enable entropy generation.

	
__exit__(exc_type, exc_value, traceback)

	Disable entropy generation.

	
deb_pkg_tools.gpg.generate_entropy()

	Force the system to generate entropy based on disk I/O.

This function is run in a separate process by EntropyGenerator.
It scans the complete file system and reads every file it finds in blocks
of 1 KB. This function never returns; it has to be killed.

deb_pkg_tools.package

Functions to build and inspect Debian binary package archives (*.deb files).

	
deb_pkg_tools.package.BINARY_PACKAGE_ARCHIVE_EXTENSIONS = ('.deb', '.udeb')

	A tuple of strings with supported filename extensions of Debian binary package
archives. Used by find_package_archives() and parse_filename().

	
deb_pkg_tools.package.DEPENDENCY_FIELDS = ('Depends', 'Pre-Depends')

	A tuple of strings with names of control file fields that specify dependencies,
used by collect_related_packages() to analyze dependency trees.

	
deb_pkg_tools.package.DIRECTORIES_TO_REMOVE = ('.bzr', '.git', '.hg', '.svn', '__pycache__')

	A tuple of strings with fnmatch [https://docs.python.org/3/library/fnmatch.html#module-fnmatch] patterns of directories to remove before
building a package. Used by clean_package_tree() which is called by
build_package(). Avoids the following Lintian warnings:

	package-contains-vcs-control-dir [http://lintian.debian.org/tags/package-contains-vcs-control-dir.html]

	package-installs-python-pycache-dir [http://lintian.debian.org/tags/package-installs-python-pycache-dir.html]

	
deb_pkg_tools.package.FILES_TO_REMOVE = ('*.pyc', '*.pyo', '*~', '.*.s??', '.DS_Store', '.DS_Store.gz', '._*', '.bzrignore', '.gitignore', '.hg_archival.txt', '.hgignore', '.hgtags', '.s??')

	A tuple of strings with fnmatch [https://docs.python.org/3/library/fnmatch.html#module-fnmatch] patterns of files to remove before
building a package. Used by clean_package_tree() which is called by
build_package(). Avoids the following Lintian warnings:

	backup-file-in-package [http://lintian.debian.org/tags/backup-file-in-package.html]

	macos-ds-store-file-in-package [http://lintian.debian.org/tags/macos-ds-store-file-in-package.html]

	macos-resource-fork-file-in-package [http://lintian.debian.org/tags/macos-resource-fork-file-in-package.html]

	package-contains-vcs-control-file [http://lintian.debian.org/tags/package-contains-vcs-control-file.html]

	package-installs-python-bytecode [http://lintian.debian.org/tags/package-installs-python-bytecode.html]

	
deb_pkg_tools.package.OBJECT_FILE_EXCLUDES = ('*.eot', '*.gif', '*.ico', '*.jpeg', '*.jpg', '*.mo', '*.mp3', '*.otf', '*.pdf', '*.png', '*.ttf', '*.woff', '*.woff2', '*.xls', '*.xlsx')

	A tuple of strings with fnmatch [https://docs.python.org/3/library/fnmatch.html#module-fnmatch] patterns of common file types to be
ignored by find_object_files() even if the files in question have the
executable bit set and contain binary data.

This option was added to minimize harmless but possibly confusing warnings from
strip_object_files() and/or find_system_dependencies() caused
by binary files that happen to (incorrectly) have their executable bit set.

	
deb_pkg_tools.package.ALLOW_CHOWN = True

	True [https://docs.python.org/3/library/constants.html#True] to allow build_package() to normalize file ownership by
running chown [https://manpages.debian.org/chown], False [https://docs.python.org/3/library/constants.html#False] to disallow usage of chown [https://manpages.debian.org/chown].

The environment variable $DPT_CHOWN_FILES can be used to control the value
of this variable (see coerce_boolean() [https://humanfriendly.readthedocs.io/en/latest/api.html#humanfriendly.coerce_boolean] for acceptable
values).

	
deb_pkg_tools.package.ALLOW_FAKEROOT_OR_SUDO = True

	True [https://docs.python.org/3/library/constants.html#True] to allow build_package() to use fakeroot [https://manpages.debian.org/fakeroot] (when
available) or sudo [https://manpages.debian.org/sudo] (when fakeroot [https://manpages.debian.org/fakeroot] is not available),
False [https://docs.python.org/3/library/constants.html#False] to disallow this behavior.

The environment variable $DPT_ALLOW_FAKEROOT_OR_SUDO can be used to control
the value of this variable (see coerce_boolean() [https://humanfriendly.readthedocs.io/en/latest/api.html#humanfriendly.coerce_boolean] for
acceptable values).

	
deb_pkg_tools.package.ALLOW_HARD_LINKS = True

	True [https://docs.python.org/3/library/constants.html#True] to allow copy_package_files() to use hard links to
optimize file copying, False [https://docs.python.org/3/library/constants.html#False] to disallow this behavior.

The environment variable $DPT_HARD_LINKS can be used to control the value
of this variable (see coerce_boolean() [https://humanfriendly.readthedocs.io/en/latest/api.html#humanfriendly.coerce_boolean] for acceptable
values).

	
deb_pkg_tools.package.ALLOW_RESET_SETGID = True

	True [https://docs.python.org/3/library/constants.html#True] to allow build_package() to remove the sticky bit from
directories, False [https://docs.python.org/3/library/constants.html#False] to disallow this behavior.

The environment variable $DPT_RESET_SETGID can be used to control the value
of this variable (see coerce_boolean() [https://humanfriendly.readthedocs.io/en/latest/api.html#humanfriendly.coerce_boolean] for acceptable
values).

	
deb_pkg_tools.package.PARSE_STRICT = True

	If PARSE_STRICT is True [https://docs.python.org/3/library/constants.html#True] then parse_filename() expects
filenames of *.deb archives to encode the package name, version and
architecture delimited by underscores. This is the default behavior and
backwards compatible with deb-pkg-tools 6.0 and older.

If PARSE_STRICT is False [https://docs.python.org/3/library/constants.html#False] then parse_filename() will
fall back to reading the package name, version and architecture from the
metadata contained in the *.deb archive.

The environment variable $DPT_PARSE_STRICT can be used to control the value
of this variable (see coerce_boolean() [https://humanfriendly.readthedocs.io/en/latest/api.html#humanfriendly.coerce_boolean] for acceptable
values).

	
deb_pkg_tools.package.ROOT_USER = 'root'

	The name of the system user that is used by build_package() when it
normalizes file ownership using chown [https://manpages.debian.org/chown] (controlled by
ALLOW_CHOWN).

The environment variable $DPT_ROOT_USER can be used to control the value
of this variable.

	
deb_pkg_tools.package.ROOT_GROUP = 'root'

	The name of the system group that is used by build_package() when it
normalizes file ownership using chown [https://manpages.debian.org/chown] (controlled by
ALLOW_CHOWN).

The environment variable $DPT_ROOT_GROUP can be used to control the value
of this variable.

	
deb_pkg_tools.package.parse_filename(filename, cache=None)

	Parse the filename of a Debian binary package archive.

	Parameters

	
	filename – The pathname of a Debian binary package archive (a string).

	cache – The PackageCache to use when PARSE_STRICT
is False [https://docs.python.org/3/library/constants.html#False] (defaults to None [https://docs.python.org/3/library/constants.html#None]).

	Returns

	A PackageFile object.

	Raises

	ValueError [https://docs.python.org/2/library/exceptions.html#exceptions.ValueError] in the following circumstances:

	The filename extension doesn’t match any of the known
BINARY_PACKAGE_ARCHIVE_EXTENSIONS.

	The filename doesn’t have three underscore separated components
(and PARSE_STRICT is True [https://docs.python.org/3/library/constants.html#True]).

This function parses the filename of a Debian binary package archive into
three fields: the name of the package, its version and its architecture.
See also determine_package_archive().

Here’s an example:

>>> from deb_pkg_tools.package import parse_filename
>>> components = parse_filename('/var/cache/apt/archives/python2.7_2.7.3-0ubuntu3.4_amd64.deb')
>>> print(repr(components))
PackageFile(name='python2.7',
 version='2.7.3-0ubuntu3.4',
 architecture='amd64',
 filename='/var/cache/apt/archives/python2.7_2.7.3-0ubuntu3.4_amd64.deb')

	
class deb_pkg_tools.package.PackageFile

	A named tuple with the result of parse_filename().

The function parse_filename() reports the fields of a package
archive’s filename as a PackageFile object (a named tuple).
Here are the fields supported by these named tuples:

	
name

	The name of the package (a string).

	
version

	The version of the package (a Version object).

	
architecture

	The architecture of the package (a string).

	
filename

	The absolute pathname of the package archive (a string).

The values of the directory, other_versions and
newer_versions properties are generated on demand.

PackageFile objects support sorting according to Debian’s
package version comparison algorithm as implemented in dpkg
--compare-versions.

	
directory

	The absolute pathname of the directory containing the package archive (a string).

	
other_versions

	A list of PackageFile objects with other versions of the same package in the same directory.

	
newer_versions

	A list of PackageFile objects with newer versions of the same package in the same directory.

	
deb_pkg_tools.package.find_package_archives(directory, cache=None)

	Find the Debian package archive(s) in the given directory.

	Parameters

	
	directory – The pathname of a directory (a string).

	cache – The PackageCache that parse_filename()
should use when PARSE_STRICT is False [https://docs.python.org/3/library/constants.html#False]
(defaults to None [https://docs.python.org/3/library/constants.html#None]).

	Returns

	A list of PackageFile objects.

	
deb_pkg_tools.package.collect_related_packages(filename, strict=None, cache=None, interactive=None)

	Collect the package archive(s) related to the given package archive.

	Parameters

	
	filename – The filename of an existing *.deb archive (a string).

	cache – The PackageCache to use (defaults to None [https://docs.python.org/3/library/constants.html#None]).

	interactive – True [https://docs.python.org/3/library/constants.html#True] to draw an interactive spinner on the
terminal (see Spinner [https://humanfriendly.readthedocs.io/en/latest/api.html#humanfriendly.terminal.spinners.Spinner]),
False [https://docs.python.org/3/library/constants.html#False] to skip the interactive spinner or
None [https://docs.python.org/3/library/constants.html#None] to detect whether we’re connected to an
interactive terminal.

	Returns

	A list of PackageFile objects.

This works by parsing and resolving the dependencies of the given package
to filenames of package archives, then parsing and resolving the
dependencies of those package archives, etc. until no more relationships
can be resolved to existing package archives.

Known limitations / sharp edges of this function:

	Only Depends and Pre-Depends relationships are processed, Provides
is ignored. I’m not yet sure whether it makes sense to add support for
Conflicts, Provides and Replaces (and how to implement it).

	Unsatisfied relationships don’t trigger a warning or error because this
function doesn’t know in what context a package can be installed (e.g.
which additional repositories a given apt client has access to).

	Please thoroughly test this functionality before you start to rely on it.
What this function tries to do is a complex operation to do correctly
(given the limited information this function has to work with) and the
implementation is far from perfect. Bugs have been found and fixed in
this code and more bugs will undoubtedly be discovered. You’ve been
warned :-).

	This function can be rather slow on large package repositories and
dependency sets due to the incremental nature of the related package
collection. It’s a known issue / limitation.

This function is used to implement the deb-pkg-tools --collect command:

$ deb-pkg-tools -c /tmp python-deb-pkg-tools_1.13-1_all.deb
2014-05-18 08:33:42 deb_pkg_tools.package INFO Collecting packages related to ~/python-deb-pkg-tools_1.13-1_all.deb ..
2014-05-18 08:33:42 deb_pkg_tools.package INFO Scanning ~/python-deb-pkg-tools_1.13-1_all.deb ..
2014-05-18 08:33:42 deb_pkg_tools.package INFO Scanning ~/python-coloredlogs_0.4.8-1_all.deb ..
2014-05-18 08:33:42 deb_pkg_tools.package INFO Scanning ~/python-chardet_2.2.1-1_all.deb ..
2014-05-18 08:33:42 deb_pkg_tools.package INFO Scanning ~/python-humanfriendly_1.7.1-1_all.deb ..
2014-05-18 08:33:42 deb_pkg_tools.package INFO Scanning ~/python-debian_0.1.21-1_all.deb ..
Found 5 package archives:
 - ~/python-chardet_2.2.1-1_all.deb
 - ~/python-coloredlogs_0.4.8-1_all.deb
 - ~/python-deb-pkg-tools_1.13-1_all.deb
 - ~/python-humanfriendly_1.7.1-1_all.deb
 - ~/python-debian_0.1.21-1_all.deb
Copy 5 package archives to /tmp? [Y/n] y
2014-05-18 08:33:44 deb_pkg_tools.cli INFO Done! Copied 5 package archives to /tmp.

	
deb_pkg_tools.package.collect_related_packages_helper(candidate_archives, given_archive, cache, interactive)

	Internal helper for package collection to enable simple conflict resolution.

	
deb_pkg_tools.package.match_relationships(package_archive, relationship_sets)

	Internal helper for package collection to validate that all relationships are satisfied.

This function enables collect_related_packages_helper() to validate
that all relationships are satisfied while the set of related package
archives is being collected and again afterwards to make sure that no
previously drawn conclusions were invalidated by additionally collected
package archives.

	
exception deb_pkg_tools.package.CollectedPackagesConflict(conflicts)

	Exception raised by collect_related_packages_helper().

	
__init__(conflicts)

	Construct a CollectedPackagesConflict exception.

	Parameters

	conflicts – A list of conflicting PackageFile objects.

	
deb_pkg_tools.package.find_latest_version(packages, cache=None)

	Find the package archive with the highest version number.

	Parameters

	
	packages – A list of filenames (strings) and/or
PackageFile objects.

	cache – The PackageCache that parse_filename()
should use when PARSE_STRICT is False [https://docs.python.org/3/library/constants.html#False]
(defaults to None [https://docs.python.org/3/library/constants.html#None]).

	Returns

	The PackageFile with the highest version number.

	Raises

	ValueError [https://docs.python.org/2/library/exceptions.html#exceptions.ValueError] when not all of the given package
archives share the same package name.

This function uses Version objects for version comparison.

	
deb_pkg_tools.package.group_by_latest_versions(packages, cache=None)

	Group package archives by name of package and find latest version of each.

	Parameters

	
	packages – A list of filenames (strings) and/or
PackageFile objects.

	cache – The PackageCache that parse_filename()
should use when PARSE_STRICT is False [https://docs.python.org/3/library/constants.html#False]
(defaults to None [https://docs.python.org/3/library/constants.html#None]).

	Returns

	A dictionary with package names as keys and
PackageFile objects as values.

	
deb_pkg_tools.package.inspect_package(archive, cache=None)

	Get the metadata and contents from a *.deb archive.

	Parameters

	
	archive – The pathname of an existing *.deb archive.

	cache – The PackageCache to use (defaults to None [https://docs.python.org/3/library/constants.html#None]).

	Returns

	A tuple with two dictionaries:

	The result of inspect_package_fields().

	The result of inspect_package_contents().

	
deb_pkg_tools.package.inspect_package_fields(archive, cache=None)

	Get the fields (metadata) from a *.deb archive.

	Parameters

	
	archive – The pathname of an existing *.deb archive.

	cache – The PackageCache to use (defaults to None [https://docs.python.org/3/library/constants.html#None]).

	Returns

	A dictionary with control file fields (the result of
parse_control_fields()).

Here’s an example:

>>> from deb_pkg_tools.package import inspect_package_fields
>>> print(repr(inspect_package_fields('python3.4-minimal_3.4.0-1+precise1_amd64.deb')))
{'Architecture': u'amd64',
 'Conflicts': RelationshipSet(VersionedRelationship(name=u'binfmt-support', operator=u'<<', version=u'1.1.2')),
 'Depends': RelationshipSet(VersionedRelationship(name=u'libpython3.4-minimal', operator=u'=', version=u'3.4.0-1+precise1'),
 VersionedRelationship(name=u'libexpat1', operator=u'>=', version=u'1.95.8'),
 VersionedRelationship(name=u'libgcc1', operator=u'>=', version=u'1:4.1.1'),
 VersionedRelationship(name=u'zlib1g', operator=u'>=', version=u'1:1.2.0')),
 'Description': u'Minimal subset of the Python language (version 3.4)\n This package contains the interpreter and some essential modules. It can\n be used in the boot process for some basic tasks.\n See /usr/share/doc/python3.4-minimal/README.Debian for a list of the modules\n contained in this package.',
 'Installed-Size': 3586,
 'Maintainer': u'Felix Krull <f_krull@gmx.de>',
 'Multi-Arch': u'allowed',
 'Original-Maintainer': u'Matthias Klose <doko@debian.org>',
 'Package': u'python3.4-minimal',
 'Pre-Depends': RelationshipSet(VersionedRelationship(name=u'libc6', operator=u'>=', version=u'2.15')),
 'Priority': u'optional',
 'Recommends': u'python3.4',
 'Section': u'python',
 'Source': u'python3.4',
 'Suggests': RelationshipSet(Relationship(name=u'binfmt-support')),
 'Version': u'3.4.0-1+precise1'}

	
deb_pkg_tools.package.inspect_package_contents(archive, cache=None)

	Get the contents from a *.deb archive.

	Parameters

	
	archive – The pathname of an existing *.deb archive.

	cache – The PackageCache to use (defaults to None [https://docs.python.org/3/library/constants.html#None]).

	Returns

	A dictionary with the directories and files contained in the
package. The dictionary keys are the absolute pathnames and the
dictionary values are ArchiveEntry objects (see the
example below).

An example:

>>> from deb_pkg_tools.package import inspect_package_contents
>>> print(repr(inspect_package_contents('python3.4-minimal_3.4.0-1+precise1_amd64.deb')))
{u'/': ArchiveEntry(permissions=u'drwxr-xr-x', owner=u'root', group=u'root', size=0, modified=u'2014-03-20 23:54', target=u''),
 u'/usr/': ArchiveEntry(permissions=u'drwxr-xr-x', owner=u'root', group=u'root', size=0, modified=u'2014-03-20 23:52', target=u''),
 u'/usr/bin/': ArchiveEntry(permissions=u'drwxr-xr-x', owner=u'root', group=u'root', size=0, modified=u'2014-03-20 23:54', target=u''),
 u'/usr/bin/python3.4': ArchiveEntry(permissions=u'-rwxr-xr-x', owner=u'root', group=u'root', size=3536680, modified=u'2014-03-20 23:54', target=u''),
 u'/usr/bin/python3.4m': ArchiveEntry(permissions=u'hrwxr-xr-x', owner=u'root', group=u'root', size=0, modified=u'2014-03-20 23:54', target=u'/usr/bin/python3.4'),
 u'/usr/share/': ArchiveEntry(permissions=u'drwxr-xr-x', owner=u'root', group=u'root', size=0, modified=u'2014-03-20 23:53', target=u''),
 u'/usr/share/binfmts/': ArchiveEntry(permissions=u'drwxr-xr-x', owner=u'root', group=u'root', size=0, modified=u'2014-03-20 23:53', target=u''),
 u'/usr/share/binfmts/python3.4': ArchiveEntry(permissions=u'-rw-r--r--', owner=u'root', group=u'root', size=72, modified=u'2014-03-20 23:53', target=u''),
 u'/usr/share/doc/': ArchiveEntry(permissions=u'drwxr-xr-x', owner=u'root', group=u'root', size=0, modified=u'2014-03-20 23:53', target=u''),
 u'/usr/share/doc/python3.4-minimal/': ArchiveEntry(permissions=u'drwxr-xr-x', owner=u'root', group=u'root', size=0, modified=u'2014-03-20 23:54', target=u''),
 u'/usr/share/doc/python3.4-minimal/README.Debian': ArchiveEntry(permissions=u'-rw-r--r--', owner=u'root', group=u'root', size=3779, modified=u'2014-03-20 23:52', target=u''),
 u'/usr/share/doc/python3.4-minimal/changelog.Debian.gz': ArchiveEntry(permissions=u'-rw-r--r--', owner=u'root', group=u'root', size=28528, modified=u'2014-03-20 22:32', target=u''),
 u'/usr/share/doc/python3.4-minimal/copyright': ArchiveEntry(permissions=u'-rw-r--r--', owner=u'root', group=u'root', size=51835, modified=u'2014-03-20 20:37', target=u''),
 u'/usr/share/man/': ArchiveEntry(permissions=u'drwxr-xr-x', owner=u'root', group=u'root', size=0, modified=u'2014-03-20 23:52', target=u''),
 u'/usr/share/man/man1/': ArchiveEntry(permissions=u'drwxr-xr-x', owner=u'root', group=u'root', size=0, modified=u'2014-03-20 23:54', target=u''),
 u'/usr/share/man/man1/python3.4.1.gz': ArchiveEntry(permissions=u'-rw-r--r--', owner=u'root', group=u'root', size=5340, modified=u'2014-03-20 23:30', target=u''),
 u'/usr/share/man/man1/python3.4m.1.gz': ArchiveEntry(permissions=u'lrwxrwxrwx', owner=u'root', group=u'root', size=0, modified=u'2014-03-20 23:54', target=u'python3.4.1.gz')}

	
class deb_pkg_tools.package.ArchiveEntry

	A named tuple with the result of inspect_package().

The function inspect_package() reports the contents of package
archives as a dictionary containing named tuples. Here are the fields
supported by those named tuples:

	
permissions

	The entry type and permission bits just like ls -l prints them (a string like drwxr-xr-x).

	
owner

	The username of the owner of the entry (a string).

	
group

	The group name of group owning the entry (a string).

	
size

	The size of the entry in bytes (an integer).

	
modified

	A string like 2013-09-26 22:28.

	
target

	If the entry represents a symbolic link this field gives the pathname of
the target of the symbolic link. Defaults to an empty string.

	
device_type

	If the entry represents a device file this field gives the device type
major and minor numbers as a tuple of two integers. Defaults to a tuple
with two zeros.

Note

This defaults to a tuple with two zeros so that
ArchiveEntry tuples can be reliably sorted just like
regular tuples (i.e. without getting
TypeError [https://docs.python.org/2/library/exceptions.html#exceptions.TypeError] exceptions due to comparisons
between incompatible value types).

	
deb_pkg_tools.package.build_package(directory, repository=None, check_package=True, copy_files=True, **options)

	Create a Debian package using the dpkg-deb --build command.

	Parameters

	
	directory – The pathname of a directory tree suitable for packaging
with dpkg-deb --build.

	repository – The pathname of the directory where the generated
*.deb archive should be stored.

By default a temporary directory is created to store the
generated archive, in this case the caller is
responsible for cleaning up the directory.

Before deb-pkg-tools 2.0 this defaulted to the system
wide temporary directory which could result in corrupted
archives during concurrent builds.

	check_package – If True [https://docs.python.org/3/library/constants.html#True] (the default) Lintian [http://lintian.debian.org/] is run to check
the resulting package archive for possible issues.

	copy_files – If True [https://docs.python.org/3/library/constants.html#True] (the default) the package’s files are copied
to a temporary directory before being modified. You can
set this to False [https://docs.python.org/3/library/constants.html#False] if you’re already working on a
copy and don’t want yet another copy to be made.

	update_conffiles – If True [https://docs.python.org/3/library/constants.html#True] (the default) files in /etc
will be added to DEBIAN/conffiles
automatically using update_conffiles(),
otherwise it is up to the caller whether to do
this or not.

	strip_object_files – If True [https://docs.python.org/3/library/constants.html#True] (not the default) then
strip_object_files() will be used.

	find_system_dependencies – If True [https://docs.python.org/3/library/constants.html#True] (not the default) then
find_system_dependencies() will be
used.

	Returns

	The pathname of the generated *.deb archive.

	Raises

	executor.ExternalCommandFailed [https://executor.readthedocs.io/en/latest/api.html#executor.ExternalCommandFailed] if any of the external
commands invoked by this function fail.

The dpkg-deb --build command requires a certain directory tree layout
and specific files; for more information about this topic please refer to
the Debian Binary Package Building HOWTO [http://tldp.org/HOWTO/html_single/Debian-Binary-Package-Building-HOWTO/]. The build_package()
function performs the following steps to build a package:

	Copies the files in the source directory to a temporary build directory.

	Updates the Installed-Size [http://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-Installed-Size] field in the DEBIAN/control file
based on the size of the given directory (using
update_installed_size()).

	Sets the owner and group of all files to root because this is the
only user account guaranteed to always be available. This uses the
fakeroot [https://manpages.debian.org/fakeroot] command so you don’t actually need root access to
use build_package().

	Runs the command fakeroot dpkg-deb --build to generate a Debian
package from the files in the build directory.

	Runs Lintian [http://lintian.debian.org/] to check the resulting package archive for possible
issues. The result of Lintian is purely informational: If ‘errors’ are
reported and Lintian exits with a nonzero status code, this is ignored
by build_package().

	
deb_pkg_tools.package.determine_package_archive(directory)

	Determine the name of a package archive before building it.

	Parameters

	source_directory – The pathname of a directory tree suitable for
packaging with dpkg-deb --build.

	Returns

	The filename of the *.deb archive to be built.

This function determines the name of the *.deb package archive that
will be generated from a directory tree suitable for packaging with
dpkg-deb --build. See also parse_filename().

	
deb_pkg_tools.package.copy_package_files(from_directory, to_directory, hard_links=True)

	Copy package files to a temporary directory, using hard links when possible.

	Parameters

	
	from_directory – The pathname of a directory tree suitable for
packaging with dpkg-deb --build.

	to_directory – The pathname of a temporary build directory.

	hard_links – Use hard links to speed up copying when possible.

This function copies a directory tree suitable for packaging with
dpkg-deb --build to a temporary build directory so that individual
files can be replaced without changing the original directory tree. If the
build directory is on the same file system as the source directory, hard
links are used to speed up the copy. This function is used by
build_package().

	
deb_pkg_tools.package.clean_package_tree(directory, remove_dirs=('.bzr', '.git', '.hg', '.svn', '__pycache__'), remove_files=('*.pyc', '*.pyo', '*~', '.*.s??', '.DS_Store', '.DS_Store.gz', '._*', '.bzrignore', '.gitignore', '.hg_archival.txt', '.hgignore', '.hgtags', '.s??'))

	Clean up files that should not be included in a Debian package from the given directory.

	Parameters

	
	directory – The pathname of the directory to clean (a string).

	remove_dirs – An iterable with filename patterns of directories that
should not be included in the package. Defaults to
DIRECTORIES_TO_REMOVE.

	remove_files – An iterable with filename patterns of files that
should not be included in the package. Defaults to
FILES_TO_REMOVE.

Uses the fnmatch [https://docs.python.org/3/library/fnmatch.html#module-fnmatch] module for directory and filename matching.
Matching is done on the base name of each directory and file. This function
assumes it is safe to unlink files from the given directory (which it
should be when copy_package_files() was previously called, e.g. by
build_package()).

	
deb_pkg_tools.package.strip_object_files(object_files)

	Use strip [https://manpages.debian.org/strip] to make object files smaller.

	Parameters

	object_files – An iterable of strings with filenames of object files.

This function runs strip --strip-unneeded on each of the given object
files to make them as small as possible. To find the object files you can
use find_object_files().

If the strip [https://manpages.debian.org/strip] program is not installed a debug message is logged
but no exceptions are raised. When the strip [https://manpages.debian.org/strip] program fails a
warning message is logged but again, no exceptions are raised.

One reason not to propagate these error conditions as exceptions is that
find_object_files() will match files with binary contents that
have their executable bit set, regardless of whether those files are
actually valid object files.

	
deb_pkg_tools.package.find_system_dependencies(object_files)

	Use dpkg-shlibdeps [https://manpages.debian.org/dpkg-shlibdeps] to find dependencies on system packages.

	Parameters

	object_files – An iterable of strings with filenames of object files.

	Returns

	A list of strings in the format of the entries on the
Depends: line of a binary package control file.

This function uses the dpkg-shlibdeps [https://manpages.debian.org/dpkg-shlibdeps] program to find dependencies
on system packages by analyzing the given object files (binary executables
and/or *.so files). To find the object files you can use
find_object_files().

Here’s an example to make things a bit more concrete:

>>> find_system_dependencies(['/usr/bin/ssh'])
['libc6 (>= 2.17)',
 'libgssapi-krb5-2 (>= 1.12.1+dfsg-2)',
 'libselinux1 (>= 1.32)',
 'libssl1.0.0 (>= 1.0.1)',
 'zlib1g (>= 1:1.1.4)']

Very advanced magic! :-)

	
deb_pkg_tools.package.find_object_files(directory)

	Find binary executables and *.so files.

	Parameters

	directory – The pathname of the directory to search (a string).

	Returns

	A list of filenames of object files (strings).

This function is used by build_package() to find files to process
with find_system_dependencies() and strip_object_files().
It works by inspecting all of the files in the given directory:

	If the filename matches *.so it is considered an object file.

	If the file is marked executable and it contains binary data it is also
considered an object file, unless the filename matches one of the
patterns in OBJECT_FILE_EXCLUDES.

	
deb_pkg_tools.package.is_binary_file(filename)

	Check whether a file appears to contain binary data.

	Parameters

	filename – The filename of the file to check (a string).

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the file appears to contain binary data,
False [https://docs.python.org/3/library/constants.html#False] otherwise.

	
deb_pkg_tools.package.update_conffiles(directory)

	Make sure the DEBIAN/conffiles file is up to date.

	Parameters

	directory – The pathname of a directory tree suitable for packaging
with dpkg-deb --build.

Given a directory tree suitable for packaging with dpkg-deb --build
this function updates the entries in the DEBIAN/conffiles file. This
function is used by build_package().

In deb-pkg-tools release 8.4 support for excludes was added: If an entry in
the DEBIAN/conffiles starts with an exclamation mark (optionally
followed by whitespace) that entry will be omitted from the final file.

	
deb_pkg_tools.package.update_installed_size(directory)

	Make sure the Installed-Size field in DEBIAN/control is up to date.

	Parameters

	directory – The pathname of a directory tree suitable for packaging
with dpkg-deb --build.

Given a directory tree suitable for packaging with dpkg-deb --build
this function updates the Installed-Size [http://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-Installed-Size] field in the DEBIAN/control
file. This function is used by build_package().

deb_pkg_tools.repo

Create, update and activate trivial Debian package repositories.

The functions in the deb_pkg_tools.repo module make it possible to
transform a directory of *.deb archives into a (temporary) Debian package
repository:

	update_repository() creates/updates a trivial repository [http://www.debian.org/doc/manuals/repository-howto/repository-howto#id443677]

	activate_repository() enables apt-get to install packages from
the trivial repository

	deactivate_repository() cleans up after
activate_repository()

All of the functions in this module can raise executor.ExternalCommandFailed [https://executor.readthedocs.io/en/latest/api.html#executor.ExternalCommandFailed].

You can configure the GPG key(s) used by this module through a configuration
file, please refer to the documentation of select_gpg_key().

	
deb_pkg_tools.repo.ALLOW_SUDO = True

	True [https://docs.python.org/3/library/constants.html#True] to enable the use of sudo [https://manpages.debian.org/sudo] during operations that normally
require elevated privileges (the default), False [https://docs.python.org/3/library/constants.html#False] to disable the use of
sudo [https://manpages.debian.org/sudo]. This option is provided for power users to disable the use of
sudo [https://manpages.debian.org/sudo] because it may not be available in all build environments. The
environment variable $DPT_SUDO can be used to control the value of this
variable (see coerce_boolean() [https://humanfriendly.readthedocs.io/en/latest/api.html#humanfriendly.coerce_boolean] for acceptable values).

	
deb_pkg_tools.repo.scan_packages(repository, packages_file=None, cache=None)

	A reimplementation of the dpkg-scanpackages -m command in Python.

Updates a Packages file based on the Debian package archive(s) found in
the given directory. Uses PackageCache to (optionally) speed
up the process significantly by caching package metadata and hashes on
disk. This explains why this function can be much faster than the
dpkg-scanpackages [https://manpages.debian.org/dpkg-scanpackages] program.

	Parameters

	
	repository – The pathname of a directory containing Debian
package archives (a string).

	packages_file – The pathname of the Packages file to update
(a string). Defaults to the Packages file in
the given directory.

	cache – The PackageCache to use (defaults to None [https://docs.python.org/3/library/constants.html#None]).

	
deb_pkg_tools.repo.get_packages_entry(pathname, cache=None)

	Get a dictionary with the control fields required in a Packages file.

	Parameters

	
	pathname – The pathname of the package archive (a string).

	cache – The PackageCache to use (defaults to None [https://docs.python.org/3/library/constants.html#None]).

	Returns

	A dictionary with control fields (see below).

Used by scan_packages() to generate Packages files. The
format of Packages files (part of the Debian binary package repository
format) is fairly simple:

	All of the fields extracted from a package archive’s control file using
inspect_package_fields() are listed (you have to get these
fields yourself and combine the dictionaries returned by
inspect_package_fields() and
get_packages_entry());

	The field Filename contains the filename of the package archive
relative to the Packages file (which is in the same directory in our
case, because update_repository() generates trivial
repositories);

	The field Size contains the size of the package archive in bytes;

	The following fields contain package archive checksums:

	MD5sum

	Calculated using the md5() constructor of the hashlib [https://docs.python.org/3/library/hashlib.html#module-hashlib] module.

	SHA1

	Calculated using the sha1() constructor of the hashlib [https://docs.python.org/3/library/hashlib.html#module-hashlib] module.

	SHA256

	Calculated using the sha256() constructor of the hashlib [https://docs.python.org/3/library/hashlib.html#module-hashlib] module.

The three checksums are calculated simultaneously by reading the package
archive once, in blocks of a kilobyte. This is probably why this function
seems to be faster than dpkg-scanpackages -m (even when used without
caching).

	
deb_pkg_tools.repo.update_repository(directory, release_fields={}, gpg_key=None, cache=None)

	Create or update a trivial repository [http://www.debian.org/doc/manuals/repository-howto/repository-howto#id443677].

	Parameters

	
	directory – The pathname of a directory with *.deb packages.

	release_fields – An optional dictionary with fields to set inside the
Release file.

	gpg_key – The GPGKey object used to sign the repository.
Defaults to the result of select_gpg_key().

	cache – The PackageCache to use (defaults to None [https://docs.python.org/3/library/constants.html#None]).

	Raises

	ResourceLockedException when the given repository
directory is being updated by another process.

This function is based on the Debian programs dpkg-scanpackages [https://manpages.debian.org/dpkg-scanpackages] and
apt-ftparchive [https://manpages.debian.org/apt-ftparchive] and also uses gpg [https://manpages.debian.org/gpg] and gzip [https://manpages.debian.org/gzip]. The following files are
generated:

	Filename

	Description

	Packages

	Provides the metadata of all *.deb packages in the
trivial repository [http://www.debian.org/doc/manuals/repository-howto/repository-howto#id443677] as a single text file. Generated
using scan_packages() (as a faster alternative
to dpkg-scanpackages [https://manpages.debian.org/dpkg-scanpackages]).

	Packages.gz

	A compressed version of the package metadata generated
using gzip [https://manpages.debian.org/gzip].

	Release

	Metadata about the release and hashes of the Packages
and Packages.gz files. Generated using
apt-ftparchive [https://manpages.debian.org/apt-ftparchive].

	Release.gpg

	An ASCII-armored detached GPG signature of the Release
file. Generated using gpg --armor --sign
--detach-sign.

	InRelease

	The contents of the Release file and its GPG signature
combined into a single human readable file. Generated
using gpg --armor --sign --clearsign.

For more details about the Release.gpg and InRelease files please
refer to the Debian wiki’s section on secure-apt [https://wiki.debian.org/SecureApt].

	
deb_pkg_tools.repo.activate_repository(directory, gpg_key=None)

	Activate a local trivial repository.

	Parameters

	
	directory – The pathname of a directory with *.deb packages.

	gpg_key – The GPGKey object used to sign the repository.
Defaults to the result of select_gpg_key().

This function sets everything up so that a trivial Debian package
repository can be used to install packages without a webserver. This uses
the file:// URL scheme to point apt-get [https://manpages.debian.org/apt-get] to a directory on the
local file system.

Warning

This function requires root privileges to:

	create the directory /etc/apt/sources.list.d,

	create a *.list file in /etc/apt/sources.list.d and

	run apt-get update.

This function will use sudo [https://manpages.debian.org/sudo] to gain root privileges
when it’s not already running as root.

See also

ALLOW_SUDO

	
deb_pkg_tools.repo.deactivate_repository(directory)

	Deactivate a local repository that was previously activated using activate_repository().

	Parameters

	directory – The pathname of a directory with *.deb packages.

Warning

This function requires root privileges to:

	delete a *.list file in /etc/apt/sources.list.d and

	run apt-get update.

This function will use sudo [https://manpages.debian.org/sudo] to gain root privileges
when it’s not already running as root.

See also

ALLOW_SUDO

	
deb_pkg_tools.repo.with_repository(directory, *command, **kw)

	Execute an external command while a repository is activated.

	Parameters

	
	directory – The pathname of a directory containing *.deb archives
(a string).

	command – The command to execute (a tuple of strings, passed verbatim
to executor.execute() [https://executor.readthedocs.io/en/latest/api.html#executor.execute]).

	cache – The PackageCache to use (defaults to None [https://docs.python.org/3/library/constants.html#None]).

	Raises

	executor.ExternalCommandFailed [https://executor.readthedocs.io/en/latest/api.html#executor.ExternalCommandFailed] if any external commands fail.

This function create or updates a trivial package repository, activates the
repository, runs an external command (usually apt-get install) and
finally deactivates the repository again. Also deactivates the repository
when the external command fails and executor.ExternalCommandFailed [https://executor.readthedocs.io/en/latest/api.html#executor.ExternalCommandFailed]
is raised.

See also

ALLOW_SUDO

	
deb_pkg_tools.repo.apt_supports_trusted_option()

	Figure out whether apt supports the [trusted=yes] option.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the option is supported, False [https://docs.python.org/3/library/constants.html#False] if it is not.

Since apt version 0.8.16~exp3 the option [trusted=yes] can be used in a
sources.list file to disable GPG key checking (see Debian bug
#596498 [http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=596498]). This version of apt is included with Ubuntu 12.04 and later,
but deb-pkg-tools also has to support older versions of apt. The
apt_supports_trusted_option() function checks if the installed
version of apt supports the [trusted=yes] option, so that deb-pkg-tools
can use it when possible.

	
deb_pkg_tools.repo.select_gpg_key(directory)

	Select a suitable GPG key for repository signing.

	Parameters

	directory – The pathname of the directory that contains the package
repository to sign (a string).

	Returns

	A GPGKey object or None [https://docs.python.org/3/library/constants.html#None].

Used by update_repository() and activate_repository() to
select the GPG key for repository signing based on a configuration file.

Configuration file locations:

The following locations are checked for a configuration file:

	~/.deb-pkg-tools/repos.ini

	/etc/deb-pkg-tools/repos.ini

If both files exist only the first one is used.

Configuration file contents:

The configuration files are in the *.ini file format (refer to the
ConfigParser [https://docs.python.org/2/library/configparser.html#module-ConfigParser] module for details). Each section in the configuration
file defines a signing key.

The directory option controls to which directory or directories a
signing key applies. The value of this option is the pathname of a
directory and supports pattern matching using ? and * (see the
fnmatch [https://docs.python.org/3/library/fnmatch.html#module-fnmatch] module for details).

The default signing key:

If a section does not define a directory option then that section is
used as the default signing key for directories that are not otherwise
matched (by a directory option).

Compatibility with GnuPG >= 2.1:

GnuPG 2.1 compatibility was implemented in deb-pkg-tools release 5.0
which changes how users are expected to select an isolated GPG key pair:

	Before deb-pkg-tools 5.0 only GnuPG < 2.1 was supported and the
configuration used the public-key-file and secret-key-file
options to configure the pathnames of the public key file and
the secret key file:

[old-example]
public-key-file = ~/.deb-pkg-tools/default-signing-key.pub
secret-key-file = ~/.deb-pkg-tools/default-signing-key.sec

	In deb-pkg-tools 5.0 support for GnuPG >= 2.1 was added which means the
public key and secret key files are no longer configured separately,
instead a key-store option is used to point to a directory in the
format of ~/.gnupg containing the key pair:

[new-example]
key-store = ~/.deb-pkg-tools/default-signing-key/

Additionally a key-id option was added to make it possible to select
a specific key pair from a GnuPG profile directory.

Staying backwards compatible:

By specifying all three of the public-key-file, secret-key-file and
key-store options it is possible to achieve compatibility with all
supported GnuPG versions:

	When GnuPG >= 2.1 is installed the key-store option will be used.

	When GnuPG < 2.1 is installed the public-key-file and
secret-key-file options will be used.

In this case the caller is responsible for making sure that a suitable key
pair is available in both locations (compatible with the appropriate
version of GnuPG).

Default behavior:

If no GPG keys are configured but apt requires local repositories to be
signed (see apt_supports_trusted_option()) then this function falls
back to selecting an automatically generated signing key. The generated key
pair is stored in the directory ~/.deb-pkg-tools.

	
deb_pkg_tools.repo.load_config(repository)

	Load repository configuration from a repos.ini file.

deb_pkg_tools.utils

Utility functions.

The functions in the deb_pkg_tools.utils module are not directly
related to Debian packages/repositories, however they are used by the other
modules in the deb-pkg-tools package.

	
deb_pkg_tools.utils.compact(text, *args, **kw)

	Alias for backwards compatibility.

	
deb_pkg_tools.utils.sha1(text)

	Calculate the SHA1 fingerprint of text.

	Parameters

	text – The text to fingerprint (a string).

	Returns

	The fingerprint of the text (a string).

	
deb_pkg_tools.utils.makedirs(directory)

	Create a directory and any missing parent directories.

It is not an error if the directory already exists.

	Parameters

	directory – The pathname of a directory (a string).

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the directory was created, False [https://docs.python.org/3/library/constants.html#False] if it already
exists.

	
deb_pkg_tools.utils.optimize_order(package_archives)

	Shuffle a list of package archives in random order.

Usually when scanning a large group of package archives, it really doesn’t
matter in which order we scan them. However the progress reported using
Spinner [https://humanfriendly.readthedocs.io/en/latest/api.html#humanfriendly.terminal.spinners.Spinner] can be more accurate when
we shuffle the order. Why would that happen? When the following conditions
are met:

	The package repository contains multiple versions of the same packages;

	The package repository contains both small and (very) big packages.

If you scan the package archives in usual sorting order you will first hit
a batch of multiple versions of the same small package which can be scanned
very quickly (the progress counter will jump). Then you’ll hit a batch of
multiple versions of the same big package and scanning becomes much slower
(the progress counter will hang). Shuffling mostly avoids this effect.

	
deb_pkg_tools.utils.find_debian_architecture()

	Find the Debian architecture of the current environment.

Uses os.uname() [https://docs.python.org/3/library/os.html#os.uname] to determine the current machine architecture
(the fifth value returned by os.uname() [https://docs.python.org/3/library/os.html#os.uname]) and translates it into
one of the machine architecture labels [https://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-Architecture] used in the Debian packaging
system:

	Machine architecture

	Debian architecture

	i686

	i386

	x86_64

	amd64

	armv6l

	armhf

When the machine architecture is not listed above, this function falls back
to the external command dpkg-architecture -qDEB_BUILD_ARCH (provided by
the dpkg-dev package). This command is not used by default because:

	deb-pkg-tools doesn’t have a strict dependency on dpkg-dev.

	The dpkg-architecture [https://manpages.debian.org/dpkg-architecture] program enables callers to set the current
architecture and the exact semantics of this are unclear to me at the
time of writing (it can’t automagically provide a cross compilation
environment, so what exactly does it do?).

	Returns

	The Debian architecture (a string like i386, amd64,
armhf, etc).

	Raises

	ExternalCommandFailed [https://executor.readthedocs.io/en/latest/api.html#executor.ExternalCommandFailed] when the
dpkg-architecture [https://manpages.debian.org/dpkg-architecture] program is not available
or reports an error.

	
deb_pkg_tools.utils.find_installed_version(package_name)

	Find the installed version of a Debian system package.

	Parameters

	package_name – The name of the package (a string).

	Returns

	The installed version of the package (a string) or None [https://docs.python.org/3/library/constants.html#None] if
the version can’t be found.

This function uses the dpkg-query --show --showformat='${Version}' ...
command (see the dpkg-query [https://manpages.debian.org/dpkg-query] documentation for details).

	
class deb_pkg_tools.utils.atomic_lock(pathname, wait=True)

	Context manager for atomic locking of files and directories.

This context manager exploits the fact that os.mkdir() [https://docs.python.org/3/library/os.html#os.mkdir] on UNIX
is an atomic operation, which means it will only work on UNIX.

Intended to be used with Python’s with [https://docs.python.org/3/reference/compound_stmts.html#with] statement:

with atomic_lock('/var/www/apt-archive/some/repository'):
 # Inside the with block you have exclusive access.
 pass

	
__init__(pathname, wait=True)

	Prepare to atomically lock the given pathname.

	Parameters

	
	pathname – The pathname of a file or directory (a string).

	wait – Block until the lock can be claimed (a boolean, defaults
to True [https://docs.python.org/3/library/constants.html#True]).

If wait=False and the file or directory cannot be locked,
ResourceLockedException will be raised when entering the
with [https://docs.python.org/3/reference/compound_stmts.html#with] block.

	
__enter__()

	Atomically lock the given pathname.

	
__exit__(exc_type=None, exc_value=None, traceback=None)

	Unlock the previously locked pathname.

	
exception deb_pkg_tools.utils.ResourceLockedException

	Raised by atomic_lock() when the lock can’t be claimed.

deb_pkg_tools.version

Version comparison and sorting according to Debian semantics.

The deb_pkg_tools.version module supports version comparison and sorting
according to section 5.6.12 of the Debian Policy Manual [http://www.debian.org/doc/debian-policy/ch-controlfields.html#s-f-Version]. The main entry
points for users of the Python API are the compare_versions() function
and the Version class.

This module contains two Debian version comparison implementations:

	compare_versions_native()

	This is a pure Python implementation of the Debian version sorting algorithm.
It’s the default choice of compare_versions() for performance reasons.

	compare_versions_external()

	This works by running the external command dpkg --compare-versions. It’s
provided only as an alternative to fall back on should issues come to light
with the implementation of compare_versions_native(), for more on that
please refer to PREFER_DPKG.

Note

Deprecated names

The following aliases exist to preserve backwards compatibility, however a DeprecationWarning [https://docs.python.org/2/library/exceptions.html#exceptions.DeprecationWarning] is triggered when they are accessed, because these aliases will be removed in a future release.

	
deb_pkg_tools.version.dpkg_comparison_cache

	Alias for deb_pkg_tools.version.DPKG_COMPARISON_CACHE.

	
deb_pkg_tools.version.compare_versions_with_dpkg

	Alias for deb_pkg_tools.version.compare_versions_external.

	
deb_pkg_tools.version.compare_versions_with_python_apt

	Alias for deb_pkg_tools.version.compare_versions_external.

	
deb_pkg_tools.version.PREFER_DPKG = False

	True [https://docs.python.org/3/library/constants.html#True] to prefer compare_versions_external() over
compare_versions_native(), False [https://docs.python.org/3/library/constants.html#False] otherwise (the
default is False [https://docs.python.org/3/library/constants.html#False]).

The environment variable $DPT_VERSION_COMPAT can be used to control the
value of this variable (see coerce_boolean() [https://humanfriendly.readthedocs.io/en/latest/api.html#humanfriendly.coerce_boolean] for
acceptable values).

Note

This option was added in preparation for release 8.0 which
replaces python-apt [https://packages.debian.org/python-apt] based version comparison with a pure Python
implementation that -although tested- definitely has the potential to
cause regressions. If regressions do surface this option provides an
easy to use “escape hatch” to restore compatibility.

	
deb_pkg_tools.version.DPKG_COMPARISON_CACHE = {}

	This dictionary is used by compare_versions_external() to cache dpkg
--compare-versions results. Each key in the dictionary is a tuple of three
values: (version1, operator, version2). Each value in the dictionary is a
boolean (True [https://docs.python.org/3/library/constants.html#True] if the comparison succeeded, False [https://docs.python.org/3/library/constants.html#False] if it failed).

	
deb_pkg_tools.version.NATIVE_COMPARISON_CACHE = {}

	This dictionary is used by compare_versions_native() to cache the
results of comparisons between version strings. Each key in the dictionary is a
tuple of two values: (version1, version2). Each value is one of the following
integers:

	-1 means version1 sorts before version2

	0 means version1 and version2 are equal

	1 means version1 sorts after version2

This cache is a lot more efficient than DPKG_COMPARISON_CACHE because
the cache key doesn’t contain operators.

	
deb_pkg_tools.version.coerce_version(value)

	Coerce strings to Version objects.

	Parameters

	value – The value to coerce (a string or Version object).

	Returns

	A Version object.

	
deb_pkg_tools.version.compare_versions(version1, operator, version2)

	Compare Debian package versions using the best available method.

	Parameters

	
	version1 – The version on the left side of the comparison (a string).

	operator – The operator to use in the comparison (a string).

	version2 – The version on the right side of the comparison (a string).

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the comparison succeeds, False [https://docs.python.org/3/library/constants.html#False] if it fails.

This function prefers to use compare_versions_native() but will use
compare_versions_external() instead when PREFER_DPKG is
True [https://docs.python.org/3/library/constants.html#True].

	
deb_pkg_tools.version.compare_versions_external(version1, operator, version2)

	Compare Debian package versions using the external command dpkg --compare-versions

	Parameters

	
	version1 – The version on the left side of the comparison (a string).

	operator – The operator to use in the comparison (a string).

	version2 – The version on the right side of the comparison (a string).

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the comparison succeeds, False [https://docs.python.org/3/library/constants.html#False] if it fails.

See also

DPKG_COMPARISON_CACHE and PREFER_DPKG

	
deb_pkg_tools.version.compare_versions_native(version1, operator, version2)

	Compare Debian package versions using a pure Python implementation.

	Parameters

	
	version1 – The version on the left side of the comparison (a string).

	operator – The operator to use in the comparison (a string).

	version2 – The version on the right side of the comparison (a string).

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the comparison succeeds, False [https://docs.python.org/3/library/constants.html#False] if it fails.

See also

NATIVE_COMPARISON_CACHE and compare_version_objects()

	
class deb_pkg_tools.version.Version(value)

	Rich comparison of Debian package versions as first-class Python objects.

The Version class is a subclass of the built in str [https://docs.python.org/3/library/stdtypes.html#str] type
that implements rich comparison according to the version sorting order
defined in the Debian Policy Manual. Use it to sort Debian package versions
like this:

>>> from deb_pkg_tools.version import Version
>>> unsorted = ['0.1', '0.5', '1.0', '2.0', '3.0', '1:0.4', '2:0.3']
>>> print(sorted(Version(s) for s in unsorted))
['0.1', '0.5', '1.0', '2.0', '3.0', '1:0.4', '2:0.3']

This example uses ‘epoch’ numbers (the numbers before the colons) to
demonstrate that this version sorting order is different from regular
sorting and ‘natural order sorting’.

	
epoch

	The integer value of the epoch number specified by the version string
(defaults to zero in case the Debian version number doesn’t specify an
epoch number).

	
upstream_version

	A string containing the main version number component that encodes the
upstream version number.

	
debian_revision

	A string containing the Debian revision suffixed to the version number.

	
__init__(value)

	Initialize a Version object.

	Parameters

	value – A string containing a Debian version number.

	
__hash__()

	Enable adding Version objects to sets and using them as dictionary keys.

	
__eq__(other)

	Enable equality comparison between Version objects.

	
__ne__(other)

	Enable non-equality comparison between version objects.

	
__lt__(other)

	Enable less-than comparison between version objects.

	
__le__(other)

	Enable less-than-or-equal comparison between version objects.

	
__gt__(other)

	Enable greater-than comparison between version objects.

	
__ge__(other)

	Enable greater-than-or-equal comparison between version objects.

deb_pkg_tools.version.native

Pure Python implementation of Debian version comparison and sorting.

The deb_pkg_tools.version module previously integrated with python-apt [https://packages.debian.org/python-apt],
however it was pointed out to me in issue #20 [https://github.com/xolox/python-deb-pkg-tools/issues/20] that python-apt [https://packages.debian.org/python-apt] uses the GPL2
license. Because GPL2 is a viral license it dictates that deb-pkg-tools [https://pypi.org/project/deb-pkg-tools/]
also needs to be published under GPL2. Because I didn’t feel like switching
from MIT to GPL I decided to remove the dependency instead (switching would
have cascaded down to several other Python packages I’ve published and I wasn’t
comfortable with that).

While working on this pure Python implementation I was initially worried about
performance being much worse than using python-apt [https://packages.debian.org/python-apt], so much so that I’d
already started researching how to implement a binary “speedup” module. Imagine
my surprise when I started running benchmarks and found that my pure Python
implementation was (just slightly) faster than python-apt [https://packages.debian.org/python-apt]!

	
deb_pkg_tools.version.native.compare_strings(version1, version2)

	Compare two upstream version strings or Debian revision strings.

	Parameters

	
	version1 – An upstream version string or Debian revision string.

	version2 – An upstream version string or Debian revision string.

	Returns

	One of the following integer numbers:

	-1 means version1 sorts before version2

	0 means version1 and version2 are equal

	1 means version1 sorts after version2

This function is used by compare_version_objects() to perform the
comparison of Debian version strings.

	
deb_pkg_tools.version.native.compare_version_objects(version1, version2)

	Compare two Version objects.

	Parameters

	
	version1 – The version on the left side of the comparison (a Version object).

	version2 – The version on the right side of the comparison (a Version object).

	Returns

	One of the following integer numbers:

	-1 means version1 sorts before version2

	0 means version1 and version2 are equal

	1 means version1 sorts after version2

This function is used by compare_versions_native()
to perform the comparison of Debian version strings, after which the operator is
interpreted by compare_versions_native().

	
deb_pkg_tools.version.native.get_digit_prefix(characters)

	Get the digit prefix from a given list of characters.

	Parameters

	characters – A list of characters.

	Returns

	An integer number (defaults to zero).

Used by compare_strings() as part of the implementation of
compare_versions_native().

	
deb_pkg_tools.version.native.get_non_digit_prefix(characters)

	Get the non-digit prefix from a given list of characters.

	Parameters

	characters – A list of characters.

	Returns

	A list of leading non-digit characters (may be empty).

Used by compare_strings() as part of the implementation of
compare_versions_native().

	
deb_pkg_tools.version.native.get_order_mapping()

	Generate a mapping of characters to integers representing sorting order.

	Returns

	A dictionary with string keys and integer values.

Used by compare_strings() as part of the implementation of
compare_versions_native().

Changelog

The purpose of this document is to list all of the notable changes to this
project. The format was inspired by Keep a Changelog [http://keepachangelog.com/]. This project adheres
to semantic versioning [http://semver.org/].

	Release 8.4 (2021-03-09)

	Release 8.3 (2020-05-11)

	Release 8.2 (2020-05-02)

	Release 8.1 (2020-04-25)

	Release 8.0 (2020-04-25)

	Release 7.0 (2020-02-07)

	Release 6.1 (2020-02-05)

	Release 6.0 (2019-09-13)

	Release 5.2 (2018-11-17)

	Release 5.1.1 (2018-10-26)

	Release 5.1 (2018-10-26)

	Release 5.0 (2018-10-25)

	Release 4.5 (2018-02-25)

	Release 4.4 (2018-02-25)

	Release 4.3 (2018-02-25)

	Release 4.2 (2017-07-10)

	Release 4.1 (2017-07-10)

	Release 4.0.2 (2017-02-02)

	Release 4.0.1 (2017-02-01)

	Release 4.0 (2017-01-31)

	Release 3.1 (2017-01-27)

	Release 3.0 (2016-11-25)

	Release 2.0 (2016-11-18)

	Release 1.37 (2016-11-17)

	Release 1.36 (2016-05-04)

	Release 1.35 (2015-09-24)

	Release 1.34.1 (2015-09-07)

	Release 1.34 (2015-07-16)

	Release 1.33 (2015-07-16)

	Release 1.32.2 (2015-05-01)

	Release 1.32.1 (2015-05-01)

	Release 1.32 (2015-04-23)

	Release 1.31 (2015-04-11)

	Release 1.30 (2015-03-18)

	Release 1.29.4 (2015-02-26)

	Release 1.29.3 (2014-12-16)

	Release 1.29.2 (2014-12-16)

	Release 1.29.1 (2014-11-15)

	Release 1.29 (2014-10-19)

	Release 1.28 (2014-09-17)

	Release 1.27.3 (2014-08-31)

	Release 1.27.2 (2014-08-31)

	Release 1.27.1 (2014-08-31)

	Release 1.27 (2014-08-31)

	Release 1.26.4 (2014-08-30)

	Release 1.26.3 (2014-08-30)

	Release 1.26.2 (2014-08-30)

	Release 1.26 (2014-08-30)

	Release 1.25 (2014-08-30)

	Release 1.24.1 (2014-08-26)

	Release 1.24 (2014-08-26)

	Release 1.23.4 (2014-08-04)

	Release 1.23.3 (2014-06-27)

	Release 1.23.2 (2014-06-25)

	Release 1.23.1 (2014-06-25)

	Release 1.23 (2014-06-25)

	Release 1.22.6 (2014-06-22)

	Release 1.22.5 (2014-06-22)

	Release 1.22.4 (2014-06-22)

	Release 1.22.3 (2014-06-19)

	Release 1.22.2 (2014-06-19)

	Release 1.22.1 (2014-06-16)

	Release 1.22 (2014-06-09)

	Release 1.21 (2014-06-09)

	Release 1.20.11 (2014-06-08)

	Release 1.20.10 (2014-06-08)

	Release 1.20.9 (2014-06-07)

	Release 1.20.8 (2014-06-07)

	Release 1.20.7 (2014-06-07)

	Release 1.20.6 (2014-06-07)

	Release 1.20.5 (2014-06-05)

	Release 1.20.4 (2014-06-01)

	Release 1.20.3 (2014-06-01)

	Release 1.20.2 (2014-06-01)

	Release 1.20.1 (2014-06-01)

	Release 1.20 (2014-06-01)

	Release 1.19 (2014-06-01)

	Release 1.18.5 (2014-05-28)

	Release 1.18.4 (2014-05-28)

	Release 1.18.3 (2014-05-26)

	Release 1.18.2 (2014-05-26)

	Release 1.18.1 (2014-05-25)

	Release 1.18 (2014-05-25)

	Release 1.17.7 (2014-05-18)

	Release 1.17.6 (2014-05-18)

	Release 1.17.5 (2014-05-18)

	Release 1.17.4 (2014-05-18)

	Release 1.17.3 (2014-05-18)

	Release 1.17.2 (2014-05-18)

	Release 1.17.1 (2014-05-18)

	Release 1.17 (2014-05-18)

	Release 1.16 (2014-05-18)

	Release 1.15.2 (2014-05-16)

	Release 1.15.1 (2014-05-10)

	Release 1.15 (2014-05-10)

	Release 1.14.7 (2014-05-04)

	Release 1.14.6 (2014-05-03)

	Release 1.14.5 (2014-05-03)

	Release 1.14.4 (2014-05-03)

	Release 1.14.3 (2014-05-03)

	Release 1.14.2 (2014-04-29)

	Release 1.14.1 (2014-04-29)

	Release 1.14 (2014-04-29)

	Release 1.13.2 (2014-04-28)

	Release 1.13.1 (2014-04-28)

	Release 1.13 (2013-11-16)

	Release 1.12.1 (2013-11-03)

	Release 1.12 (2013-11-03)

	Release 1.11 (2013-11-02)

	Release 1.10.2 (2013-11-02)

	Release 1.10.1 (2013-11-02)

	Release 1.10 (2013-11-02)

	Release 1.9.9 (2013-10-22)

	Release 1.9.8 (2013-10-22)

	Release 1.9.7 (2013-10-22)

	Release 1.9.6 (2013-10-21)

	Release 1.9.5 (2013-10-20)

	Release 1.9.4 (2013-10-20)

	Release 1.9.3 (2013-10-20)

	Release 1.9.2 (2013-10-20)

	Release 1.9.1 (2013-10-20)

	Release 1.9 (2013-10-20)

	Release 1.8 (2013-10-20)

	Release 1.7.2 (2013-10-19)

	Release 1.7.1 (2013-10-18)

	Release 1.7 (2013-10-16)

	Release 1.6.2 (2013-10-13)

	Release 1.6.1 (2013-10-12)

	Release 1.6 (2013-10-12)

	Release 1.5 (2013-10-12)

	Release 1.4.3 (2013-10-12)

	Release 1.4.2 (2013-10-12)

	Release 1.4.1 (2013-08-13)

	Release 1.4 (2013-08-13)

	Release 1.3.2 (2013-08-13)

	Release 1.3.1 (2013-08-11)

	Release 1.3 (2013-08-11)

	Release 1.2 (2013-08-10)

	Release 1.1.4 (2013-08-10)

	Release 1.1.3 (2013-08-10)

	Release 1.1.2 (2013-08-07)

	Release 1.1.1 (2013-08-07)

	Release 1.1 (2013-08-05)

	Release 1.0.3 (2013-08-04)

	Release 1.0.2 (2013-08-04)

	Release 1.0.1 (2013-08-04)

	Release 1.0 (2013-07-26)

Release 8.4 [https://github.com/xolox/python-deb-pkg-tools/compare/8.3...8.4] (2021-03-09)

Enhance deb_pkg_tools.package.update_conffiles() with exclude support:
If an entry in the DEBIAN/conffiles starts with an exclamation mark
(optionally followed by whitespace) that entry will be omitted from the final
file.

Rationale: In general I like the automatic DEBIAN/conffiles updating but
I’ve encountered circumstances [https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=363524#17] in which it is really inconvenient not being
able to exclude one or two specific files.

Release 8.3 [https://github.com/xolox/python-deb-pkg-tools/compare/8.2...8.3] (2020-05-11)

Minor improvements to the deb_pkg_tools.deb822 module:

	Slightly relax deb822 parsing

	Leading and trailing comment blocks and empty lines that directly precede or
follow a paragraph of control fields are now silently ignored. This is
intended to improve compatibility with python-debian [https://pypi.org/project/python-debian/].

	Improve deb822 parse errors

	Shortly after I started using deb-pkg-tools 8.0 it became apparent that
deb_pkg_tools.deb822.parse_deb822() is quite a bit more strict than
the previous usage of python-debian [https://pypi.org/project/python-debian/]. While I don’t necessarily
consider this a bad thing, it definitely highlighted a weak spot: The error
messages didn’t include filenames or line numbers. This is now fixed.

Release 8.2 [https://github.com/xolox/python-deb-pkg-tools/compare/8.1...8.2] (2020-05-02)

Removed textwrap.indent() [https://docs.python.org/3/library/textwrap.html#textwrap.indent] usage from deb_pkg_tools.deb822 module
because this function isn’t available on Python 2.7 which deb-pkg-tools [https://pypi.org/project/deb-pkg-tools/]
still supports. Also added a regression test.

Note

While I definitely intend to drop Python 2 support in my open source
projects at some point, right now is not the time for that just yet.

Release 8.1 [https://github.com/xolox/python-deb-pkg-tools/compare/8.0...8.1] (2020-04-25)

	Merged pull request #22 [https://github.com/xolox/python-deb-pkg-tools/pull/22] which avoids a ValueError [https://docs.python.org/2/library/exceptions.html#exceptions.ValueError]
exception in the inspect_package_contents() function when a device
file entry is parsed.

	Enhanced the inspect_package_contents() function to properly parse
device file type information exposed via the new
ArchiveEntry.device_type attribute.

	Added a regression test for device file type parsing.

Release 8.0 [https://github.com/xolox/python-deb-pkg-tools/compare/7.0...8.0] (2020-04-25)

	Dropped GPL2 dependencies

	The main purpose of this release was to resolve issue #20 [https://github.com/xolox/python-deb-pkg-tools/issues/20] by dropping two
GPL2 dependencies to avoid having to change the deb-pkg-tools [https://pypi.org/project/deb-pkg-tools/] license
from MIT to GPL2:

	python-apt [https://packages.debian.org/python-apt]

	This dependency was previously used for Debian version comparison. This
functionality has now been implemented in pure Python, for more details
please refer to the new deb_pkg_tools.version.native module.

Note

If this change introduces regressions for you, take a look at the
deb_pkg_tools.version.PREFER_DPKG variable, it may help as
a temporary workaround. Also please report the regression 😇.

	python-debian [https://pypi.org/project/python-debian/]

	This dependency was previously used for Debian binary control file parsing.
This functionality has now been implemented in pure Python, for more details
please refer to the new deb_pkg_tools.deb822 module.

	Updated Python compatibility

	Python 3.8 is now officially supported, 3.4 is no longer supported.

	Fixed deprecation warnings

	Fixed humanfriendly [https://pypi.org/project/humanfriendly/] 8.0 deprecation warnings and bumped requirements I
authored that went through the same process. Also defined the first
deprecated aliases in the deb-pkg-tools [https://pypi.org/project/deb-pkg-tools/] code base (in the process of
implementing the functionality required to drop the GPL2 dependencies).

	Quality boost for deb_pkg_tools.control module

	The deb_pkg_tools.control module saw a lot of small changes to make the
handling of case insensitivity and byte strings versus Unicode strings more
consistent. The most important changes:

	All functions that return dictionaries now return the same type of case
insensitive dictionaries (see Deb822).

	The complete module now expects and uses Unicode strings internally.
Character encoding and decoding is only done when control files are
read from and written to disk.

Release 7.0 [https://github.com/xolox/python-deb-pkg-tools/compare/6.1...7.0] (2020-02-07)

Code changes:

	Make update_conffiles() optional (requested in
#19 [https://github.com/xolox/python-deb-pkg-tools/issues/19]) in the Python API.

	Make find_object_files() use a builtin exclude
list of filename patterns to ignore.

	Start using __all__ to control what is exported:

	This change is backwards incompatible in the sense that until now imports
were exposed to the outside world, however for anyone to actually use this
would imply not having read the documentation, so this doesn’t really
bother me.

	In theory this change could be backwards incompatible in a bad way if I
omitted __all__ entries that should have been exported. I did double
check but of course I can’t be 100% sure (the deb_pkg_tools.* modules
currently span almost 6000 lines including whitespace and comments).

	I decided to bump the major version number because of the potential for
import errors caused by the introduction of __all__.

Documentation updates:

	Simplified the overview of environment variables in the readme by properly
documenting individual options and linking to their documentation entries.
Over the years I’ve picked up the habit of treating my documentation just
like my code: Make sure everything is defined in a single place (DRY), as
close as possible to the place where it is used. Properly documenting all of
the module variables that are based on environment variables and linking to
those from the readme frees me from the burden of explaining things in more
than one place. This is good because multiple explanations increase the
chance of documentation becoming outdated or contradictoring itself, which
are definitely problems to be avoided whenever possible.

	Started using :man: role to link to Linux manual pages.

	Changed Read the Docs URL (s/\.org$/.io/g).

Documented variables:

	Module variable

	Environment variable

	deb_pkg_tools.gpg.FORCE_ENTROPY

	$DPT_FORCE_ENTROPY

	deb_pkg_tools.package.ALLOW_CHOWN

	$DPT_CHOWN_FILES

	deb_pkg_tools.package.ALLOW_FAKEROOT_OR_SUDO

	$DPT_ALLOW_FAKEROOT_OR_SUDO

	deb_pkg_tools.package.ALLOW_HARD_LINKS

	$DPT_HARD_LINKS

	deb_pkg_tools.package.ALLOW_RESET_SETGID

	$DPT_RESET_SETGID

	deb_pkg_tools.package.BINARY_PACKAGE_ARCHIVE_EXTENSIONS

	

	deb_pkg_tools.package.DEPENDENCY_FIELDS

	

	deb_pkg_tools.package.DIRECTORIES_TO_REMOVE

	

	deb_pkg_tools.package.FILES_TO_REMOVE

	

	deb_pkg_tools.package.PARSE_STRICT

	$DPT_PARSE_STRICT

	deb_pkg_tools.package.ROOT_GROUP

	$DPT_ROOT_GROUP

	deb_pkg_tools.package.ROOT_USER

	$DPT_ROOT_USER

	deb_pkg_tools.repo.ALLOW_SUDO

	$DPT_SUDO

Release 6.1 [https://github.com/xolox/python-deb-pkg-tools/compare/6.0...6.1] (2020-02-05)

Implemented a feature requested from me via private email:

Problem: When filename parsing of *.deb archives fails to recognize a
package name, version and architecture encoded in the filename (delimited by
underscores) then deb-pkg-tools reports an error and aborts:

ValueError: Filename doesn't have three underscore separated components!

Solution: Setting the environment variable $DPT_PARSE_STRICT to
false changes this behavior so that the required information is extracted
from the package metadata instead of reporting an error.

For now the default remains the same (an error is reported) due to backwards
compatibility and the principle of least surprise (for those who previously
integrated deb-pkg-tools). This will likely change in the future.

Miscellaneous changes:

	Use ‘console’ highlighting in readme (prompt are now highlighted).

	Added license=MIT to setup.py script.

	Bumped copyright to 2020.

Release 6.0 [https://github.com/xolox/python-deb-pkg-tools/compare/5.2...6.0] (2019-09-13)

	Enable compatibility with newer python-apt [https://packages.debian.org/python-apt] releases:

	The test suite has been modified to break on Travis CI when python-apt [https://packages.debian.org/python-apt]
should be available but isn’t (when the Python virtual environment is based
on a Python interpreter provided by Ubuntu, currently this applies to all
build environments except Python 3.7).

	The idea behind the test suite change is to verify that the conditional
import chain in version.py always succeeds (on Travis CI, where I
control the runtime environment).

	This was added when after much debugging I finally realized why the new
Ubuntu 18.04 build server I’d created was so awfully slow: The conditional
import chain had been “silently broken” without me realizing it, except for
the fact that using the fall back implementation based on dpkg
--compare-versions to sort through thousands of version numbers was
rather noticeably slow… 😇

	Make python-memcached [https://pypi.org/project/python-memcached] an optional dependency in response to #13 [https://github.com/xolox/python-deb-pkg-tools/issues/13].

	Dropped Python 2.6 compatibility.

Release 5.2 [https://github.com/xolox/python-deb-pkg-tools/compare/5.1.1...5.2] (2018-11-17)

Promote python-debian version constraint into a conditional dependency.

Recently I constrained the version of python-debian to work around a Python 2.6
incompatibility. This same incompatibility is now biting me in the py2deb
setup on Travis CI [https://github.com/paylogic/py2deb/compare/4284a1db99699bab14bc5fb62a88256a5d1ae978...60ece9ffebbd5f1bdff7ea20fbf0eeb401a9da3f] and after fighting that situation for a while I decided it
may be better (less convoluted) to fix this in deb-pkg-tools instead (at the
source of the problem, so to speak).

Release 5.1.1 [https://github.com/xolox/python-deb-pkg-tools/compare/5.1...5.1.1] (2018-10-26)

Bug fix for logic behind deb_pkg_tools.GPGKey.existing_files property: The
configured directory wasn’t being scanned in combination with GnuPG < 2.1
even though the use of directory has become the preferred way to configure
GnuPG < 2.1 as well as GnuPG >= 2.1 (due to the GnuPG bug mentioned in the
release notes of release 5.1).

Release 5.1 [https://github.com/xolox/python-deb-pkg-tools/compare/5.0...5.1] (2018-10-26)

Added the deb_pkg_tools.gpg.GPGKey.identifier property that uses the gpg
--list-keys --with-colons command to introspect the key pair and extract a
unique identifier:

	When a fingerprint is available in the output this is the preferred value.

	Otherwise the output is searched for a key ID.

If neither of these values is available an exception is raised.

Note

While testing this I noticed that the old style gpg
--no-default-keyring --keyring=… --secret-keyring=… commands don’t
support the --list-keys command line option. The only workaround
for this is to use the directory property (which triggers the use
of --homedir) instead of the public_key_file and
secret_key_file properties. This appears to be due to a bug in
older GnuPG releases (see this mailing list thread [https://lists.gnupg.org/pipermail/gnupg-users/2002-March/012144.html]).

Release 5.0 [https://github.com/xolox/python-deb-pkg-tools/compare/4.5...5.0] (2018-10-25)

GnuPG >= 2.1 compatibility for repository signing.

This release became rather more involved than I had hoped it would 😇 because
of backwards incompatibilities in GnuPG >= 2.1 that necessitated changes in the
API that deb-pkg-tools presents to its users:

	The --secret-keyring option has been obsoleted and is ignored and
the suggested alternative is the use of an ephemeral home directory [https://www.gnupg.org/documentation/manuals/gnupg/Ephemeral-home-directories.html#Ephemeral-home-directories] which
changes how a key pair is specified.

	This impacts the API of the deb_pkg_tools.gpg.GPGKey class as well as
the repos.ini support in deb_pkg_tools.repo.update_repository().

The documentation has been updated to explain all of this, refer to the
deb_pkg_tools.gpg module for details. Detailed overview of changes:

	The deb_pkg_tools.gpg.GPGKey class is now based on property-manager
and no longer uses instance variables, because this made it easier for
me to split up the huge __init__() method into manageable chunks.

A side effect is that __init__() no longer supports positional
arguments which technically speaking is backwards incompatible
(although I never specifically intended it to be used like that).

	The deb_pkg_tools.gpg.GPGKey class now raises an exception when it
detects that the use of an isolated key pair is intended but the
directory option has not been provided even though GnuPG >= 2.1 is
being used. While this exception is new, the previous behavior on
GnuPG >= 2.1 was anything but sane, so any thoughts about the
backwards compatibility of this new exception are a moot point.

	The deb_pkg_tools.gpg.GPGKey used to raise TypeError when a key pair
is explicitly specified but only one of the two expected files exists, in
order to avoid overwriting files not “owned” by deb-pkg-tools. An exception
is still raised but the type has been changed to EnvironmentError because
I felt that it was more appropriate. This is technically backwards
incompatible but I’d be surprised if this affects even a single user…

	The repository activation fall back test (that generates an automatic
signing key in order to generate Release.gpg) was failing for me on
Ubuntu 18.04 and in the process of debugging this I added support for
InRelease files. In the end this turned out to be irrelevant to the
issue at hand, but I saw no harm in keeping the InRelease support.
This is under the assumption that the presence of an InRelease file
shouldn’t disturb older apt-get versions (which seems like a sane
assumption to me - it’s just a file on a webserver, right?).

	Eventually I found out that the repository activation fall back test
was failing due to the key type of the automatic signing key that’s
generated during the test: As soon as I changed that from DSA to RSA
things started working.

	GnuPG profile directory initialization now applies 0700 permissions to
avoid noisy warnings from GnuPG.

	Added Python 3.7 to tested and and supported versions.

	Improved update_repository() documentation.

	Moved function result caching to humanfriendly.decorators.

	I’ve changed Depends to Recommends in stdeb.cfg, with the
following rationale:

	The deb-pkg-tools package provides a lot of loosely related functionality
depending on various external commands. For example building of Debian
binary packages requires quite a few programs to be installed.

	But not every use case of deb-pkg-tools requires all of these external
commands, so demanding that they always be installed is rather inflexible.

	In my specific case this dependency creep blocked me from building
lightweight tools on top of deb-pkg-tools, because the dependency chain
would pull in a complete build environment. That was more than I bargained
for when I wanted to use a few utility functions in deb-pkg-tools 😅.

	With this change, users are responsible for installing the appropriate
packages. But then I estimate that less than one percent of my users are
actually affected by this change, because of the low popularity of
solutions like stdeb [https://pypi.org/project/stdeb/] and py2deb [https://github.com/paylogic/py2deb] 😇.

	Only the python-apt [https://packages.debian.org/python-apt] package remains as a strict dependency instead of a
recommended dependency, see 757286fc8ce [https://github.com/xolox/python-deb-pkg-tools/commit/757286fc8ce] for the rationale.

	Removed python-apt [https://packages.debian.org/python-apt] intersphinx reference (for now [https://bugs.launchpad.net/ubuntu/+source/python-apt/+bug/1799807]).

	Added this changelog to the repository and documentation.

Release 4.5 [https://github.com/xolox/python-deb-pkg-tools/compare/4.4...4.5] (2018-02-25)

Improved robustness of dpkg-shlibdeps and strip integration (followup
to release 4.4 [https://github.com/xolox/python-deb-pkg-tools/compare/4.3...4.4]).

Release 4.4 [https://github.com/xolox/python-deb-pkg-tools/compare/4.3...4.4] (2018-02-25)

Integrated support for dpkg-shlibdeps (inspired by py2deb [https://github.com/paylogic/py2deb]).

I first started (ab)using dpkg-shlibdeps in the py2deb [https://github.com/paylogic/py2deb] project and have
since missed this functionality in other projects like deb-pkg-tools so have
decided to move some stuff around :-).

Release 4.3 [https://github.com/xolox/python-deb-pkg-tools/compare/4.2...4.3] (2018-02-25)

	Make mandatory control field validation reusable.

	Include documentation in source distributions.

	Restore Python 2.6 compatibility in test suite.

Release 4.2 [https://github.com/xolox/python-deb-pkg-tools/compare/4.1...4.2] (2017-07-10)

Implement cache invalidation (follow up to #12 [https://github.com/xolox/python-deb-pkg-tools/issues/12]).

Release 4.1 [https://github.com/xolox/python-deb-pkg-tools/compare/4.0.2...4.1] (2017-07-10)

	Merged pull request #11 [https://github.com/xolox/python-deb-pkg-tools/pull/11]: State purpose of project in readme.

	Improve dependency parsing: Add more Depends like fields (fixes #12 [https://github.com/xolox/python-deb-pkg-tools/issues/12]).

	Start using humanfriendly.testing to mark skipped tests.

	Changed Sphinx documentation theme.

	Add Python 3.6 to tested versions.

Release 4.0.2 [https://github.com/xolox/python-deb-pkg-tools/compare/4.0.1...4.0.2] (2017-02-02)

Bug fix for inheritance of AlternativeRelationship. This fixes the
following error when hashing relationship objects:

AttributeError: 'AlternativeRelationship' object has no attribute 'operator'

I’d like to add tests for this but lack the time to do so at this moment,
so hopefully I can revisit this later when I have a bit more time 😇.

Release 4.0.1 [https://github.com/xolox/python-deb-pkg-tools/compare/4.0...4.0.1] (2017-02-01)

	Bug fix: Swallow unpickling errors instead of propagating them.

In general I am very much opposed to Python code that swallows exceptions
when it doesn’t know how to handle them, because it can inadvertently obscure
an issue’s root cause and/or exacerbate the issue.

But caching deserves an exception. Any code that exists solely as an
optimization should not raise exceptions caused by the caching logic. This
should avoid the following traceback which I just ran into:

Traceback (most recent call last):
 File ".../lib/python2.7/site-packages/deb_pkg_tools/cli.py", line 382, in with_repository_wrapper
 with_repository(directory, *command, cache=cache)
 File ".../lib/python2.7/site-packages/deb_pkg_tools/repo.py", line 366, in with_repository
 cache=kw.get('cache'))
 File ".../lib/python2.7/site-packages/deb_pkg_tools/repo.py", line 228, in update_repository
 cache=cache)
 File ".../lib/python2.7/site-packages/deb_pkg_tools/repo.py", line 91, in scan_packages
 fields = dict(inspect_package_fields(archive, cache=cache))
 File ".../lib/python2.7/site-packages/deb_pkg_tools/package.py", line 480, in inspect_package_fields
 value = entry.get_value()
 File ".../lib/python2.7/site-packages/deb_pkg_tools/cache.py", line 268, in get_value
 from_fs = pickle.load(handle)
ValueError: unsupported pickle protocol: 3

	Added property-manager to intersphinx mapping (enabling links in the online documentation).

Release 4.0 [https://github.com/xolox/python-deb-pkg-tools/compare/3.1...4.0] (2017-01-31)

	Added support for parsing of architecture restrictions (#9).

	Switched deb_pkg_tools.deps to use property-manager and removed
cached-property requirement in the process:

	This change simplified the deb-pkg-tools code base by removing the
deb_pkg_tools.compat.total_ordering and
deb_pkg_tools.utils.OrderedObject classes.

	The introduction of property-manager made it easier for me to
extend deb_pkg_tools.deps with the changes required to support
‘architecture restrictions’ (issue #9).

	Add Build-Depends to DEPENDS_LIKE_FIELDS. I noticed while testing
with the example provided in issue #9 that the dependencies in the
Build-Depends field weren’t being parsed. Given that I was working on
adding support for parsing of architecture restrictions (as suggested in
issue #9) this seemed like a good time to fix this 🙂.

	Updated generate_stdeb_cfg().

About backwards compatibility:

I’m bumping the major version number because 754debc0b61 [https://github.com/xolox/python-deb-pkg-tools/commit/754debc0b61] removed the
deb_pkg_tools.compat.total_ordering and deb_pkg_tools.utils.OrderedObject
classes and internal methods like _key() so strictly speaking this breaks
backwards compatibility, however both of these classes were part of
miscellaneous scaffolding used by deb-pkg-tools but not an intentional part of
the documented API, so I don’t expect this to be particularly relevant to most
(if not all) users of deb-pkg-tools.

Release 3.1 [https://github.com/xolox/python-deb-pkg-tools/compare/3.0...3.1] (2017-01-27)

	Merged pull request #8: Add support for *.udeb micro packages.

	Updated test suite after merging #8.

	Suggest memcached in stdeb.cfg.

	Added readme target to Makefile.

Release 3.0 [https://github.com/xolox/python-deb-pkg-tools/compare/2.0...3.0] (2016-11-25)

This release was a huge refactoring to enable concurrent related package
collection. In the process I switched from SQLite to the Linux file system
(augmented by memcached) because SQLite completely collapsed under concurrent
write activity (it would crap out consistently beyond a certain number of
concurrent readers and writers).

Detailed changes:

	Refactored makefile, setup script, Travis CI configuration, etc.

	Bug fix: Don’t unnecessarily garbage collect cache.

	Experimented with increased concurrency using SQLite Write-Ahead Log (WAL).

	Remove redundant :py: prefixes from RST references

	Fix broken RST references logged by sphinx-build -n.

	Moved deb_pkg_tools.utils.compact() to humanfriendly.text.compact().

	Fixed a broken pretty printer test.

	Implement and enforce PEP-8 and PEP-257 compliance

	Switch from SQLite to filesystem for package cache (to improve concurrency
between readers and writers). The WAL did not improve things as much as I
would have hoped…

	Document and optimize filesystem based package metadata cache

	Add some concurrency to deb-pkg-tools --collect (when more than one
archive is given, the collection of related archives is performed
concurrently for each archive given).

	Re-implement garbage collection for filesystem based cache.

	Improvements to interactive package collection:

	Don’t use multiprocessing when a single archive is given because it’s kind
of silly to fork subprocesses for no purpose at all.

	Restored the functionality of the optional ‘cache’ argument because the new
in memory / memcached / filesystem based cache is so simple it can be
passed to multiprocessing workers.

	Enable manual garbage collection (deb-pkg-tools --garbage-collect).

	Updated usage in readme.

	Improvements to interactive package collection:

	A single spinner is rendered during concurrent collection (instead of
multiple overlapping spinners that may not be synchronized).

	The order of the --collect and --yes options no longer matters.

	When the interactive spinner is drawn it will always be cleared, even if
the operator presses Control-C (previously it was possible for the text
cursor to remain hidden after deb-pkg-tools --collect was interrupted
by Control-C).

	Include command line interface in documentation.

Release 2.0 [https://github.com/xolox/python-deb-pkg-tools/compare/1.37...2.0] (2016-11-18)

Stop using the system wide temporary directory in order to enable concurrent builds.

Release 1.37 [https://github.com/xolox/python-deb-pkg-tools/compare/1.36...1.37] (2016-11-17)

Significant changes:

	Prefer hard linking over copying of package archives from one directory to another.

	Change Unicode output handling in command line interface. This revisits the
‘hack’ that I implemented in bc9b52419ea [https://github.com/xolox/python-deb-pkg-tools/commit/bc9b52419ea] because I noticed today (after
integrating humanfriendly.prompts.prompt_for_confirmation()) that the
wrapping of sys.stdout disables libreadline support in interactive
prompts (input() and raw_input()) which means readline hints are
printed to stdout instead of being interpreted by libreadline, making
interactive prompts rather hard to read :-s.

Miscellaneous changes:

	Test Python 3.5 on Travis CI.

	Don’t test tags on Travis CI.

	Use pip instead of python setup.py install on Travis CI.

	Uncovered and fixed a Python 3 incompatibility in the test suite.

Release 1.36 [https://github.com/xolox/python-deb-pkg-tools/compare/1.35...1.36] (2016-05-04)

Make it possible to integrate with GPG agent ($GPG_AGENT_INFO).

Release 1.35 [https://github.com/xolox/python-deb-pkg-tools/compare/1.34.1...1.35] (2015-09-24)

Include Breaks in control fields parsed like Depends.

Release 1.34.1 [https://github.com/xolox/python-deb-pkg-tools/compare/1.34...1.34.1] (2015-09-07)

Bug fix: Invalidate old package metadata caches (from before version 1.31.1).

Should have realized this much sooner of course but I didn’t, for which my
apologies if this bit anyone like it bit me 😇. I wasted two hours trying to
find out why something that was logically impossible (judging by the code base)
was happening anyway. Cached data in the old format! 😒

Release 1.34 [https://github.com/xolox/python-deb-pkg-tools/compare/1.33...1.34] (2015-07-16)

Automatically embed usage in readme (easier to keep up to date 😇).

Release 1.33 [https://github.com/xolox/python-deb-pkg-tools/compare/1.32.2...1.33] (2015-07-16)

Added deb_pkg_tools.control.create_control_file() function.

Release 1.32.2 [https://github.com/xolox/python-deb-pkg-tools/compare/1.32.1...1.32.2] (2015-05-01)

Bug fixes for related package archive collection.

Release 1.32.1 [https://github.com/xolox/python-deb-pkg-tools/compare/1.32...1.32.1] (2015-05-01)

	Include Pre-Depends in control fields parsed like Depends:.

	Updated doctest examples with regards to changes in bebe413dcc5 [https://github.com/xolox/python-deb-pkg-tools/commit/bebe413dcc5].

	Improved documentation of parse_filename().

Release 1.32 [https://github.com/xolox/python-deb-pkg-tools/compare/1.31...1.32] (2015-04-23)

Improve implementation and documentation of collect_related_packages().

The result of the old implementation was dependent on the order of entries
returned from os.listdir() which can differ from system to system (say my
laptop vervsus Travis CI) and so caused inconsistently failing builds.

Release 1.31 [https://github.com/xolox/python-deb-pkg-tools/compare/1.30...1.31] (2015-04-11)

	Extracted installed version discovery to re-usable function.

	dpkg-scanpackages isn’t used anymore, remove irrelevant references.

Release 1.30 [https://github.com/xolox/python-deb-pkg-tools/compare/1.29.4...1.30] (2015-03-18)

Added deb_pkg_tools.utils.find_debian_architecture() function.

This function is currently not used by deb-pkg-tools itself but several of my
projects that build on top of deb-pkg-tools need this functionality and all of
them eventually got their own implementation. I’ve now decided to implement
this once, properly, so that all projects can use the same tested and properly
documented implementation (as simple as it may be).

Release 1.29.4 [https://github.com/xolox/python-deb-pkg-tools/compare/1.29.3...1.29.4] (2015-02-26)

Adapted pull request #5 to restore Python 3 compatibility.

Release 1.29.3 [https://github.com/xolox/python-deb-pkg-tools/compare/1.29.2...1.29.3] (2014-12-16)

Changed SQLite row factory to “restore” Python 3.4.2 compatibility.

The last Travis CI builds that ran on Python 3.4.1 worked fine and no changes
were made in deb-pkg-tools since then so this is clearly caused by a change in
Python’s standard library. This is an ugly workaround but it’s the most elegant
way I could find to “restore” compatibility.

Release 1.29.2 [https://github.com/xolox/python-deb-pkg-tools/compare/1.29.1...1.29.2] (2014-12-16)

Bug fix: Don’t normalize Depends: lines.

Apparently dpkg-scanpackages and compatible re-implementations like the one
in deb-pkg-tools should not normalize Depends: fields because apt can get
confused by this. Somehow it uses either a literal comparison of the metadata
or a comparison of the hash of the metadata to check if an updated package is
available (I tried to find this in the apt sources but failed to do so due to
my limited experience with C++). So when the Depends: line in the
Packages.gz file differs from the Depends: line in the binary control
file inside a *.deb apt will continuously re-download and install the same
binary package…

Release 1.29.1 [https://github.com/xolox/python-deb-pkg-tools/compare/1.29...1.29.1] (2014-11-15)

Moved coerce_boolean() to humanfriendly package.

Release 1.29 [https://github.com/xolox/python-deb-pkg-tools/compare/1.28...1.29] (2014-10-19)

Merged pull request #4: Added $DPT_ALLOW_FAKEROOT_OR_SUDO and
$DPT_CHOWN_FILES environment variables to make sudo optional.

Release 1.28 [https://github.com/xolox/python-deb-pkg-tools/compare/1.27.3...1.28] (2014-09-17)

Change location of package cache when os.getuid() == 0.

Release 1.27.3 [https://github.com/xolox/python-deb-pkg-tools/compare/1.27.2...1.27.3] (2014-08-31)

Sanitize permissions of DEBIAN/{pre,post}{inst,rm} and etc/sudoers.d/*.

Release 1.27.2 [https://github.com/xolox/python-deb-pkg-tools/compare/1.27.1...1.27.2] (2014-08-31)

Improve Python 2.x/3.x compatibility (return lists explicitly).

Release 1.27.1 [https://github.com/xolox/python-deb-pkg-tools/compare/1.27...1.27.1] (2014-08-31)

	Bug fix for SQLite cache string encoding/decoding on Python 3.x.

	Bug fix for check_package() on Python 3.x.

	Bug fix for obscure Python 3.x issue (caused by mutating a list while iterating it).

	Make collect_related_packages() a bit faster (actually quite a lot when
dpkg --compare-versions is being used 🙂).

	Make deb_pkg_tools.control.* less verbose.

Release 1.27 [https://github.com/xolox/python-deb-pkg-tools/compare/1.26.4...1.27] (2014-08-31)

	Added command line interface for static checks (with improved test coverage).

	Made collect_related_packages() a bit faster.

	“Refine” entry collection strategy for Travis CI.

Release 1.26.4 [https://github.com/xolox/python-deb-pkg-tools/compare/1.26.3...1.26.4] (2014-08-30)

Restore Python 3.x compatibility (failing build [https://travis-ci.org/xolox/python-deb-pkg-tools/jobs/33995580]).

Release 1.26.3 [https://github.com/xolox/python-deb-pkg-tools/compare/1.26.2...1.26.3] (2014-08-30)

Still not enough entropy on Travis CI, let’s see if we can work around that…

I tried to fix this using rng-tools in 3c372c3097f [https://github.com/xolox/python-deb-pkg-tools/commit/3c372c3097f] but that didn’t work
out due to the way OpenVZ works. This commit introduces a more general approach
that will hopefully work on OpenVZ and other virtualized environments, we’ll
see…

Release 1.26.2 [https://github.com/xolox/python-deb-pkg-tools/compare/1.26...1.26.2] (2014-08-30)

	Restore Python 3 compatibility.

	Improve test coverage.

	Try to work around lack of entropy on Travis CI.

Release 1.26 [https://github.com/xolox/python-deb-pkg-tools/compare/1.25...1.26] (2014-08-30)

Add static analysis to detect version conflicts.

Release 1.25 [https://github.com/xolox/python-deb-pkg-tools/compare/1.24.1...1.25] (2014-08-30)

Make collect_related_packages() 5x faster:

	Use high performance decorator to memoize overrides of Relationship.matches().

	Exclude conflicting packages from all further processing as soon as they are found.

	Moved the dpkg comparison cache around.

	Removed Version.__hash__().

Release 1.24.1 [https://github.com/xolox/python-deb-pkg-tools/compare/1.24...1.24.1] (2014-08-26)

Bug fix for unused parameter in 442d67cf4dd [https://github.com/xolox/python-deb-pkg-tools/commit/442d67cf4dd].

Release 1.24 [https://github.com/xolox/python-deb-pkg-tools/compare/1.23.4...1.24] (2014-08-26)

Normalize setgid bits (because dpkg-deb doesn’t like them).

Release 1.23.4 [https://github.com/xolox/python-deb-pkg-tools/compare/1.23.3...1.23.4] (2014-08-04)

Merged pull request #2: Improve platform compatibility with environment variables.

	Added user-name and user-group overrides ($DPT_ROOT_USER,
$DPT_ROOT_GROUP) for systems that don’t have a root group or when
root isn’t a desirable consideration when building packages.

	Can now disable hard-links ($DPT_HARD_LINKS). The cp -l parameter is
not supported on Mavericks 10.9.2.

	Replaced du -sB with du -sk (not supported on Mavericks 10.9.2).

	Can now disable sudo ($DPT_SUDO) since it’s sometimes not desirable
and not required just to build the package (for example on MacOS, refer to
pull request #2 for an actual use case).

Release 1.23.3 [https://github.com/xolox/python-deb-pkg-tools/compare/1.23.2...1.23.3] (2014-06-27)

Bug fix for copy_package_files().

Release 1.23.2 [https://github.com/xolox/python-deb-pkg-tools/compare/1.23.1...1.23.2] (2014-06-25)

Further improvements to collect_packages().

Release 1.23.1 [https://github.com/xolox/python-deb-pkg-tools/compare/1.23...1.23.1] (2014-06-25)

Bug fix: Don’t swallow keyboard interrupt in collect_packages() wrapper.

Release 1.23 [https://github.com/xolox/python-deb-pkg-tools/compare/1.22.6...1.23] (2014-06-25)

Added group_by_latest_versions() function.

Release 1.22.6 [https://github.com/xolox/python-deb-pkg-tools/compare/1.22.5...1.22.6] (2014-06-22)

Try to fix cache deserialization errors on older platforms (refer to the commit
message of 8b04dfcd4d3 [https://github.com/xolox/python-deb-pkg-tools/commit/8b04dfcd4d3] for more details about the errors I’m talking about).

Release 1.22.5 [https://github.com/xolox/python-deb-pkg-tools/compare/1.22.4...1.22.5] (2014-06-22)

Preserving Python 2.x and Python 3.x compatibility is hard 😞.

Release 1.22.4 [https://github.com/xolox/python-deb-pkg-tools/compare/1.22.3...1.22.4] (2014-06-22)

Bug fix: Encode stdout/stderr as UTF-8 when not connected to a terminal.

Release 1.22.3 [https://github.com/xolox/python-deb-pkg-tools/compare/1.22.2...1.22.3] (2014-06-19)

Bug fix for Python 3 syntax compatibility.

Release 1.22.2 [https://github.com/xolox/python-deb-pkg-tools/compare/1.22.1...1.22.2] (2014-06-19)

Make the package cache resistant against deserialization errors.

Today I’ve been hitting zlib decoding errors and I’m 99% sure my disk isn’t
failing (RAID 1 array). For now I’m inclined not to dive too deep into this,
because there’s a very simple fix (see first line :-). For future reference,
here’s the zlib error:

File ".../deb_pkg_tools/cache.py", line 299, in control_fields
 return self.cache.decode(self['control_fields'])
File ".../deb_pkg_tools/cache.py", line 249, in decode
 return pickle.loads(zlib.decompress(database_value))

error: Error -5 while decompressing data

Release 1.22.1 [https://github.com/xolox/python-deb-pkg-tools/compare/1.22...1.22.1] (2014-06-16)

	Change clean_package_tree() to clean up __pycache__ directories.

	Improved test coverage of check_duplicate_files().

Release 1.22 [https://github.com/xolox/python-deb-pkg-tools/compare/1.21...1.22] (2014-06-09)

Proof of concept: duplicate files check (static analysis).

Release 1.21 [https://github.com/xolox/python-deb-pkg-tools/compare/1.20.11...1.21] (2014-06-09)

Implement proper package metadata cache using SQLite 3.x (high performance).

I’ve been working on CPU and disk I/O intensive package analysis across
hundreds of package archives which is very slow even on my MacBook Air with
four cores and an SSD. I decided to rip the ad-hoc cache in scan_packages()
out and refactor it into a more general purpose persistent, multiprocess cache
implemented on top of SQLite 3.x.

Release 1.20.11 [https://github.com/xolox/python-deb-pkg-tools/compare/1.20.10...1.20.11] (2014-06-08)

Improve performance: Cache results of RelationshipSet.matches().

Release 1.20.10 [https://github.com/xolox/python-deb-pkg-tools/compare/1.20.9...1.20.10] (2014-06-08)

Make deb_pkg_tools.utils.atomic_lock() blocking by default.

Release 1.20.9 [https://github.com/xolox/python-deb-pkg-tools/compare/1.20.8...1.20.9] (2014-06-07)

Make it possible to ask a RelationshipSet for all its names.

Release 1.20.8 [https://github.com/xolox/python-deb-pkg-tools/compare/1.20.7...1.20.8] (2014-06-07)

Bug fix for Python 3.x compatibility.

Release 1.20.7 [https://github.com/xolox/python-deb-pkg-tools/compare/1.20.6...1.20.7] (2014-06-07)

Sanitize permission bits of root directory when building packages.

Release 1.20.6 [https://github.com/xolox/python-deb-pkg-tools/compare/1.20.5...1.20.6] (2014-06-07)

Switch to executor 1.3 which supports execute(command, fakeroot=True).

Release 1.20.5 [https://github.com/xolox/python-deb-pkg-tools/compare/1.20.4...1.20.5] (2014-06-05)

Added deb_pkg_tools.control.load_control_file() function.

Release 1.20.4 [https://github.com/xolox/python-deb-pkg-tools/compare/1.20.3...1.20.4] (2014-06-01)

Minor optimization that seems to make a major difference (without this
optimization I would sometimes hit “recursion depth exceeded” errors).

Release 1.20.3 [https://github.com/xolox/python-deb-pkg-tools/compare/1.20.2...1.20.3] (2014-06-01)

Bug fix for Python 3.x compatibility (missed compat.basestring import).

Release 1.20.2 [https://github.com/xolox/python-deb-pkg-tools/compare/1.20.1...1.20.2] (2014-06-01)

Bug fix for Python 3.x incompatible syntax in newly added code.

Release 1.20.1 [https://github.com/xolox/python-deb-pkg-tools/compare/1.20...1.20.1] (2014-06-01)

Automatically create parent directories in atomic_lock class.

Release 1.20 [https://github.com/xolox/python-deb-pkg-tools/compare/1.19...1.20] (2014-06-01)

Re-implemented dpkg-scanpackages -m in Python to make it really fast.

Release 1.19 [https://github.com/xolox/python-deb-pkg-tools/compare/1.18.5...1.19] (2014-06-01)

Added function deb_pkg_tools.package.find_package_archives().

Release 1.18.5 [https://github.com/xolox/python-deb-pkg-tools/compare/1.18.4...1.18.5] (2014-05-28)

Bug fix for find_latest_version() introduced in commit 5bf01b0 [https://github.com/xolox/python-deb-pkg-tools/commit/5bf01b0] (build
failure [https://travis-ci.org/xolox/python-deb-pkg-tools/jobs/26247681] on
Travis CI).

Release 1.18.4 [https://github.com/xolox/python-deb-pkg-tools/compare/1.18.3...1.18.4] (2014-05-28)

Disable pretty printing of RelationshipSet objects by default.

Release 1.18.3 [https://github.com/xolox/python-deb-pkg-tools/compare/1.18.2...1.18.3] (2014-05-26)

	Fixed sort order of deb_pkg_tools.package.PackageFile (changed field order)

	Sanity check given arguments in deb_pkg_tools.package.find_latest_version().

	Documented the exception that can be raised by deb_pkg_tools.package.parse_filename().

Release 1.18.2 [https://github.com/xolox/python-deb-pkg-tools/compare/1.18.1...1.18.2] (2014-05-26)

Change deb_pkg_tools.deps.parse_depends() to accept a list of dependencies.

Release 1.18.1 [https://github.com/xolox/python-deb-pkg-tools/compare/1.18...1.18.1] (2014-05-25)

	Bug fix for last commit (avoid AttributeError on apt_pkg.version_compare).

	Changed documentation of deb_pkg_tools.compat module.

	Made doctest examples Python 3.x compatible (print() as function).

	Integrate customized doctest checking in makefile.

Release 1.18 [https://github.com/xolox/python-deb-pkg-tools/compare/1.17.7...1.18] (2014-05-25)

Extract version comparison to separate module (with tests).

I wanted to re-use version sorting in several places so it seemed logical to
group the related code together in a new deb_pkg_tools.version module.
While I was at it I decided to write tests that make sure the results of
compare_versions_with_python_apt() and compare_versions_with_dpkg() are
consistent with each other and the expected behavior.

Release 1.17.7 [https://github.com/xolox/python-deb-pkg-tools/compare/1.17.6...1.17.7] (2014-05-18)

Made collect_related_packages() faster (by splitting inspect_package()).

Release 1.17.6 [https://github.com/xolox/python-deb-pkg-tools/compare/1.17.5...1.17.6] (2014-05-18)

Re-implemented dpkg_compare_versions() on top of apt.VersionCompare().

Release 1.17.5 [https://github.com/xolox/python-deb-pkg-tools/compare/1.17.4...1.17.5] (2014-05-18)

Moved Python 2.x / 3.x compatibility functions to a separate module.

Release 1.17.4 [https://github.com/xolox/python-deb-pkg-tools/compare/1.17.3...1.17.4] (2014-05-18)

	Made pretty print tests compatible with Python 3.x.

	Removed binutils and tar dependencies (these are no longer needed
since the inspect_package() function now uses the dpkg-deb command).

Release 1.17.3 [https://github.com/xolox/python-deb-pkg-tools/compare/1.17.2...1.17.3] (2014-05-18)

	Cleanup pretty printer, remove monkey patching hack, add tests.

	Dedent string passed to deb822_from_string() (nice to use in tests).

Release 1.17.2 [https://github.com/xolox/python-deb-pkg-tools/compare/1.17.1...1.17.2] (2014-05-18)

	Bug fix for output of deb-pkg-tools --inspect ... (broken in Python 3.x
compatibility spree).

	Monkey patch pprint so it knows how to ‘pretty print’ RelationshipSet
(very useful to verify docstrings containing doctest blocks).

	Improved test coverage of deb_pkg_tools.package.PackageFile.__lt__().

Release 1.17.1 [https://github.com/xolox/python-deb-pkg-tools/compare/1.17...1.17.1] (2014-05-18)

	Bug fix for deb_pkg_tools.deps.parse_relationship().

	Bug fix for inspect_package() (hard links weren’t recognized).

	Added deb_pkg_tools.control.deb822_from_string() shortcut.

	Various bug fixes for Python 2.6 and 3.x compatibility:

	Bumped python-debian requirement to 0.1.21-nmu2 for Python 3.x compatibility

	Changed logger.warn() to logger.warning() (the former is deprecated).

	Fixed missing str_compatible decorator (Python 3.x compatibility).

Release 1.17 [https://github.com/xolox/python-deb-pkg-tools/compare/1.16...1.17] (2014-05-18)

Added collect_related_packages() function and deb-pkg-tools --collect
command line interface.

Release 1.16 [https://github.com/xolox/python-deb-pkg-tools/compare/1.15.2...1.16] (2014-05-18)

	Added relationship parsing/evaluation module (deb_pkg_tools.deps.*).

	Bug fix for deb_pkg_tools.generate_stdeb_cfg().

	Test suite changes:

	Skip repository activation in test_command_line_interface() when not root.

	Added an improvised slow test marker.

Release 1.15.2 [https://github.com/xolox/python-deb-pkg-tools/compare/1.15.1...1.15.2] (2014-05-16)

	Added deb_pkg_tools.package.parse_filename() function.

	Properly document deb_pkg_tools.package.ArchiveEntry named tuple.

	Improved test coverage by testing command line interface.

	Changed virtual environment handling in Makefile.

Release 1.15.1 [https://github.com/xolox/python-deb-pkg-tools/compare/1.15...1.15.1] (2014-05-10)

	Bug fix for Python 3 compatibility [https://travis-ci.org/xolox/python-deb-pkg-tools/jobs/24867811].

	Moved deb_pkg_tools.cli.with_repository() to deb_pkg_tools.repo.with_repository().

	Submit test coverage from travis-ci.org to coveralls.io, add dynamic coverage
statistics to README.rst.

	Run more tests on travis-ci.org by running test suite as root (this gives the
test suite permission to test things like apt-get local repository
activation).

	Improved test coverage of deb_pkg_tools.repository.update_repository()
and deb_pkg_tools.gpg.GPGKey().

Release 1.15 [https://github.com/xolox/python-deb-pkg-tools/compare/1.14.7...1.15] (2014-05-10)

	Merge pull request #1: Python 3 compatibility.

	Document supported Python versions (2.6, 2.7 & 3.4).

	Start using travis-ci.org to avoid dropping Python 3 compatibility in the future.

	Update documented dependencies in README.rst.

Release 1.14.7 [https://github.com/xolox/python-deb-pkg-tools/compare/1.14.6...1.14.7] (2014-05-04)

Refactored deb_pkg_tools.utils.execute() into a separate package.

Release 1.14.6 [https://github.com/xolox/python-deb-pkg-tools/compare/1.14.5...1.14.6] (2014-05-03)

Bug fix for globbing support.

Release 1.14.5 [https://github.com/xolox/python-deb-pkg-tools/compare/1.14.4...1.14.5] (2014-05-03)

Added support for deb-pkg-tools --patch=CTRL_FILE --set="Name: Value".

Release 1.14.4 [https://github.com/xolox/python-deb-pkg-tools/compare/1.14.3...1.14.4] (2014-05-03)

Make update_repository() as “atomic” as possible.

Release 1.14.3 [https://github.com/xolox/python-deb-pkg-tools/compare/1.14.2...1.14.3] (2014-05-03)

Support for globbing in configuration file (repos.ini).

Release 1.14.2 [https://github.com/xolox/python-deb-pkg-tools/compare/1.14.1...1.14.2] (2014-04-29)

Bug fix: Typo in readme (found just after publishing of course 😉).

Release 1.14.1 [https://github.com/xolox/python-deb-pkg-tools/compare/1.14...1.14.1] (2014-04-29)

Added support for the system wide configuration file /etc/deb-pkg-tools/repos.ini.

Release 1.14 [https://github.com/xolox/python-deb-pkg-tools/compare/1.13.2...1.14] (2014-04-29)

	Make repository generation user configurable (~/.deb-pkg-tools/repos.ini).

	Test GPG key generation (awkward but useful, make it opt-in or opt-out?).

	Make Python >= 2.6 dependency explicit in stdeb.cfg (part 2 :-).

	Documentation bug fix: Update usage message and README.rst.

Release 1.13.2 [https://github.com/xolox/python-deb-pkg-tools/compare/1.13.1...1.13.2] (2014-04-28)

Bug fix: Respect the build_package(copy_files=False) option.

Release 1.13.1 [https://github.com/xolox/python-deb-pkg-tools/compare/1.13...1.13.1] (2014-04-28)

	Try to detect removal of *.deb files in update_repository().

	Bring test coverage back up to >= 90%.

Release 1.13 [https://github.com/xolox/python-deb-pkg-tools/compare/1.12.1...1.13] (2013-11-16)

Make inspect_package() report package contents. This was added to make it
easier to write automated tests for deb-pkg-tools but may be useful in other
circumstances and so became part of the public API 😇.

Release 1.12.1 [https://github.com/xolox/python-deb-pkg-tools/compare/1.12...1.12.1] (2013-11-03)

Make Python >= 2.6 dependency explicit in stdeb.cfg.

Release 1.12 [https://github.com/xolox/python-deb-pkg-tools/compare/1.11...1.12] (2013-11-03)

Make copy_package_files() more generally useful.

Release 1.11 [https://github.com/xolox/python-deb-pkg-tools/compare/1.10.2...1.11] (2013-11-02)

	Improve deb_pkg_tools.gpg.GPGKey and related documentation.

Release 1.10.2 [https://github.com/xolox/python-deb-pkg-tools/compare/1.10.1...1.10.2] (2013-11-02)

Bug fix: Make update_repository() always remove old Release.gpg files.

Release 1.10.1 [https://github.com/xolox/python-deb-pkg-tools/compare/1.10...1.10.1] (2013-11-02)

Bug fix: Make update_repository() fully aware of apt_supports_trusted_option().

Release 1.10 [https://github.com/xolox/python-deb-pkg-tools/compare/1.9.9...1.10] (2013-11-02)

Use the [trusted=yes] option in sources.list when possible:

With this we no longer need a generated GPG key at all; we just skip all steps
that have anything to do with GPG :-). Unfortunately we still need to be
backwards compatible so the code to generate and manage GPG keys remains for
now…

Release 1.9.9 [https://github.com/xolox/python-deb-pkg-tools/compare/1.9.8...1.9.9] (2013-10-22)

Remove automatic dependency installation (too much magic, silly idea).

Release 1.9.8 [https://github.com/xolox/python-deb-pkg-tools/compare/1.9.7...1.9.8] (2013-10-22)

Bug fixes for last commit (sorry about that!).

Release 1.9.7 [https://github.com/xolox/python-deb-pkg-tools/compare/1.9.6...1.9.7] (2013-10-22)

New deb-pkg-tools --with-repo=DIR COMMAND... functionality (only exposed in
the command line interface for now).

Release 1.9.6 [https://github.com/xolox/python-deb-pkg-tools/compare/1.9.5...1.9.6] (2013-10-21)

Workaround for old and buggy versions of GnuPG 😞.

Release 1.9.5 [https://github.com/xolox/python-deb-pkg-tools/compare/1.9.4...1.9.5] (2013-10-20)

Bug fix for update_repository().

Release 1.9.4 [https://github.com/xolox/python-deb-pkg-tools/compare/1.9.3...1.9.4] (2013-10-20)

Change update_repository() to only rebuild repositories when contents have changed.

Release 1.9.3 [https://github.com/xolox/python-deb-pkg-tools/compare/1.9.2...1.9.3] (2013-10-20)

Make update_conffiles() work properly in Python < 2.7.

Release 1.9.2 [https://github.com/xolox/python-deb-pkg-tools/compare/1.9.1...1.9.2] (2013-10-20)

Enable overriding of GPG key used by the deb_pkg_tools.repo.* functions.

Release 1.9.1 [https://github.com/xolox/python-deb-pkg-tools/compare/1.9...1.9.1] (2013-10-20)

Made it possible not to copy the files in the build directory (build_package()).

Release 1.9 [https://github.com/xolox/python-deb-pkg-tools/compare/1.8...1.9] (2013-10-20)

Extracted GPG key generation into standalone function.

Release 1.8 [https://github.com/xolox/python-deb-pkg-tools/compare/1.7.2...1.8] (2013-10-20)

Automatic installation of required system packages.

Release 1.7.2 [https://github.com/xolox/python-deb-pkg-tools/compare/1.7.1...1.7.2] (2013-10-19)

Make copy_package_files() compatible with schroot environments.

Release 1.7.1 [https://github.com/xolox/python-deb-pkg-tools/compare/1.7...1.7.1] (2013-10-18)

Enable callers of update_repository() to set fields of Release files.

Release 1.7 [https://github.com/xolox/python-deb-pkg-tools/compare/1.6.2...1.7] (2013-10-16)

Change build_package() to automatically update DEBIAN/conffiles.

Release 1.6.2 [https://github.com/xolox/python-deb-pkg-tools/compare/1.6.1...1.6.2] (2013-10-13)

Bug fix: Make deb-pkg-tools -u and deb-pkg-tools -a compatible with schroot environments.

Release 1.6.1 [https://github.com/xolox/python-deb-pkg-tools/compare/1.6...1.6.1] (2013-10-12)

Added stdeb.cfg to MANIFEST.in.

Release 1.6 [https://github.com/xolox/python-deb-pkg-tools/compare/1.5...1.6] (2013-10-12)

	Improved documentation of deb_pkg_tools.utils.execute().

	Improved deb_pkg_tools.utils.execute(), implemented optional sudo support.

Release 1.5 [https://github.com/xolox/python-deb-pkg-tools/compare/1.4.3...1.5] (2013-10-12)

Automatically generate a GPG automatic signing key the first time it’s needed.

Release 1.4.3 [https://github.com/xolox/python-deb-pkg-tools/compare/1.4.2...1.4.3] (2013-10-12)

	Made log messages more user friendly.

	Made Debian package dependencies available from Python.

Release 1.4.2 [https://github.com/xolox/python-deb-pkg-tools/compare/1.4.1...1.4.2] (2013-10-12)

Make it possible to delete fields using patch_control_file().

Release 1.4.1 [https://github.com/xolox/python-deb-pkg-tools/compare/1.4...1.4.1] (2013-08-13)

Improved update_installed_size() (by using patch_control_file()).

Release 1.4 [https://github.com/xolox/python-deb-pkg-tools/compare/1.3.2...1.4] (2013-08-13)

Normalize field names in control files (makes merging easier).

Release 1.3.2 [https://github.com/xolox/python-deb-pkg-tools/compare/1.3.1...1.3.2] (2013-08-13)

Make build_package() sanitize file modes:

I was debating with myself for quite a while how far to go in these kinds of
“sensible defaults”; there will always be someone who doesn’t want the
behavior. I decided that those people shouldn’t be using deb-pkg-tools then :-)
(I wonder how long it takes though, before I find myself in that group of
people ;-).

Release 1.3.1 [https://github.com/xolox/python-deb-pkg-tools/compare/1.3...1.3.1] (2013-08-11)

Improved clean_package_tree() (better documentation, more files to ignore).

Release 1.3 [https://github.com/xolox/python-deb-pkg-tools/compare/1.2...1.3] (2013-08-11)

Added clean_package_tree() function.

Release 1.2 [https://github.com/xolox/python-deb-pkg-tools/compare/1.1.4...1.2] (2013-08-10)

Added patch_control_file() function.

Release 1.1.4 [https://github.com/xolox/python-deb-pkg-tools/compare/1.1.3...1.1.4] (2013-08-10)

Removed as much manual shell quoting as possible.

Release 1.1.3 [https://github.com/xolox/python-deb-pkg-tools/compare/1.1.2...1.1.3] (2013-08-10)

	Silenced deb_pkg_tools.utils.execute()

	Simplified deb_pkg_tools.package.inspect_package().

Release 1.1.2 [https://github.com/xolox/python-deb-pkg-tools/compare/1.1.1...1.1.2] (2013-08-07)

Started using coloredlogs.increase_verbosity().

Release 1.1.1 [https://github.com/xolox/python-deb-pkg-tools/compare/1.1...1.1.1] (2013-08-07)

Loosen up the requirements (stop using absolute version pinning).

Release 1.1 [https://github.com/xolox/python-deb-pkg-tools/compare/1.0.3...1.1] (2013-08-05)

Automatically run Lintian after building packages.

Release 1.0.3 [https://github.com/xolox/python-deb-pkg-tools/compare/1.0.2...1.0.3] (2013-08-04)

Improved wording of readme, fixed typo in docs.

Release 1.0.2 [https://github.com/xolox/python-deb-pkg-tools/compare/1.0.1...1.0.2] (2013-08-04)

Got rid of the use of shell pipes in order to detect “command not found” errors.

Release 1.0.1 [https://github.com/xolox/python-deb-pkg-tools/compare/1.0...1.0.1] (2013-08-04)

Brought test suite coverage up to 96% 🎉.

Release 1.0 [https://github.com/xolox/python-deb-pkg-tools/tree/1.0] (2013-07-26)

Initial commit with a focus on:

	Building of Debian binary packages.

	Inspecting the metadata of Debian binary packages.

	Creation of trivial repositories based on collected package metadata.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 deb_pkg_tools	

 	
 	
 deb_pkg_tools.cache	

 	
 	
 deb_pkg_tools.checks	

 	
 	
 deb_pkg_tools.cli	

 	
 	
 deb_pkg_tools.config	

 	
 	
 deb_pkg_tools.control	

 	
 	
 deb_pkg_tools.deb822	

 	
 	
 deb_pkg_tools.deps	

 	
 	
 deb_pkg_tools.gpg	

 	
 	
 deb_pkg_tools.package	

 	
 	
 deb_pkg_tools.repo	

 	
 	
 deb_pkg_tools.utils	

 	
 	
 deb_pkg_tools.version	

 	
 	
 deb_pkg_tools.version.native	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__enter__() (deb_pkg_tools.gpg.EntropyGenerator method)

 	(deb_pkg_tools.utils.atomic_lock method)

 	__eq__() (deb_pkg_tools.deb822.Deb822 method)

 	(deb_pkg_tools.version.Version method)

 	__exit__() (deb_pkg_tools.gpg.EntropyGenerator method)

 	(deb_pkg_tools.utils.atomic_lock method)

 	__ge__() (deb_pkg_tools.version.Version method)

 	__getstate__() (deb_pkg_tools.cache.PackageCache method)

 	__gt__() (deb_pkg_tools.version.Version method)

 	__hash__() (deb_pkg_tools.version.Version method)

 	__init__() (deb_pkg_tools.cache.CacheEntry method)

 	(deb_pkg_tools.cache.PackageCache method)

 	(deb_pkg_tools.deps.AlternativeRelationship method)

 	(deb_pkg_tools.deps.RelationshipSet method)

 	(deb_pkg_tools.gpg.EntropyGenerator method)

 	(deb_pkg_tools.gpg.GPGKey method)

 	(deb_pkg_tools.package.CollectedPackagesConflict method)

 	(deb_pkg_tools.utils.atomic_lock method)

 	(deb_pkg_tools.version.Version method)

 	
 	__iter__() (deb_pkg_tools.deps.RelationshipSet method)

 	__le__() (deb_pkg_tools.version.Version method)

 	__lt__() (deb_pkg_tools.version.Version method)

 	__ne__() (deb_pkg_tools.version.Version method)

 	__repr__() (deb_pkg_tools.deps.AlternativeRelationship method)

 	(deb_pkg_tools.deps.Relationship method)

 	(deb_pkg_tools.deps.RelationshipSet method)

 	(deb_pkg_tools.deps.VersionedRelationship method)

 	__setstate__() (deb_pkg_tools.cache.PackageCache method)

 	__unicode__() (deb_pkg_tools.deps.AlternativeRelationship method)

 	(deb_pkg_tools.deps.Relationship method)

 	(deb_pkg_tools.deps.RelationshipSet method)

 	(deb_pkg_tools.deps.VersionedRelationship method)

A

 	
 	AbstractRelationship (class in deb_pkg_tools.deps)

 	activate_repository() (in module deb_pkg_tools.repo)

 	ALLOW_CHOWN (in module deb_pkg_tools.package)

 	ALLOW_FAKEROOT_OR_SUDO (in module deb_pkg_tools.package)

 	ALLOW_HARD_LINKS (in module deb_pkg_tools.package)

 	ALLOW_RESET_SETGID (in module deb_pkg_tools.package)

 	
 	ALLOW_SUDO (in module deb_pkg_tools.repo)

 	AlternativeRelationship (class in deb_pkg_tools.deps)

 	apt_supports_trusted_option() (in module deb_pkg_tools.repo)

 	architecture (deb_pkg_tools.package.PackageFile attribute)

 	architectures (deb_pkg_tools.deps.Relationship attribute)

 	ArchiveEntry (class in deb_pkg_tools.package)

 	atomic_lock (class in deb_pkg_tools.utils)

B

 	
 	batch_script (deb_pkg_tools.gpg.GPGKey attribute)

 	BINARY_PACKAGE_ARCHIVE_EXTENSIONS (in module deb_pkg_tools.package)

 	
 	BrokenPackage

 	build_package() (in module deb_pkg_tools.package)

C

 	
 	CACHE_FORMAT_REVISION (in module deb_pkg_tools.cache)

 	cache_matches() (in module deb_pkg_tools.deps)

 	CacheEntry (class in deb_pkg_tools.cache)

 	check_directory() (in module deb_pkg_tools.cli)

 	check_duplicate_files() (in module deb_pkg_tools.checks)

 	check_key_id() (deb_pkg_tools.gpg.GPGKey method)

 	check_mandatory_fields() (in module deb_pkg_tools.control)

 	check_new_usage() (deb_pkg_tools.gpg.GPGKey method)

 	check_old_files() (deb_pkg_tools.gpg.GPGKey method)

 	check_old_usage() (deb_pkg_tools.gpg.GPGKey method)

 	check_package() (in module deb_pkg_tools.checks)

 	check_version_conflicts() (in module deb_pkg_tools.checks)

 	clean_package_tree() (in module deb_pkg_tools.package)

 	coerce_version() (in module deb_pkg_tools.version)

 	collect_garbage() (deb_pkg_tools.cache.PackageCache method)

 	collect_packages() (in module deb_pkg_tools.cli)

 	
 	collect_packages_worker() (in module deb_pkg_tools.cli)

 	collect_related_packages() (in module deb_pkg_tools.package)

 	collect_related_packages_helper() (in module deb_pkg_tools.package)

 	CollectedPackagesConflict

 	command_name (deb_pkg_tools.gpg.GPGKey attribute)

 	compact() (in module deb_pkg_tools.utils)

 	compare_strings() (in module deb_pkg_tools.version.native)

 	compare_version_objects() (in module deb_pkg_tools.version.native)

 	compare_versions() (in module deb_pkg_tools.version)

 	compare_versions_external() (in module deb_pkg_tools.version)

 	compare_versions_native() (in module deb_pkg_tools.version)

 	compare_versions_with_dpkg (in module deb_pkg_tools.version)

 	compare_versions_with_python_apt (in module deb_pkg_tools.version)

 	connect_memcached() (deb_pkg_tools.cache.PackageCache method)

 	copy_package_files() (in module deb_pkg_tools.package)

 	create_control_file() (in module deb_pkg_tools.control)

 	create_directory() (in module deb_pkg_tools.gpg)

D

 	
 	deactivate_repository() (in module deb_pkg_tools.repo)

 	Deb822 (class in deb_pkg_tools.deb822)

 	(in module deb_pkg_tools.control)

 	deb822_from_string (in module deb_pkg_tools.control)

 	deb_pkg_tools.cache (module)

 	deb_pkg_tools.checks (module)

 	deb_pkg_tools.cli (module)

 	deb_pkg_tools.config (module)

 	deb_pkg_tools.control (module)

 	deb_pkg_tools.deb822 (module)

 	deb_pkg_tools.deps (module)

 	deb_pkg_tools.gpg (module)

 	deb_pkg_tools.package (module)

 	deb_pkg_tools.repo (module)

 	deb_pkg_tools.utils (module)

 	deb_pkg_tools.version (module)

 	deb_pkg_tools.version.native (module)

 	
 	debian_revision (deb_pkg_tools.version.Version attribute)

 	DEFAULT_CONTROL_FIELDS (in module deb_pkg_tools.control)

 	DEPENDENCY_FIELDS (in module deb_pkg_tools.package)

 	DEPENDS_LIKE_FIELDS (in module deb_pkg_tools.control)

 	description (deb_pkg_tools.gpg.GPGKey attribute)

 	determine_package_archive() (in module deb_pkg_tools.package)

 	device_type (deb_pkg_tools.package.ArchiveEntry attribute)

 	DIRECTORIES_TO_REMOVE (in module deb_pkg_tools.package)

 	directory (deb_pkg_tools.gpg.GPGKey attribute)

 	(deb_pkg_tools.package.PackageFile attribute)

 	directory_default (deb_pkg_tools.gpg.GPGKey attribute)

 	directory_effective (deb_pkg_tools.gpg.GPGKey attribute)

 	DPKG_COMPARISON_CACHE (in module deb_pkg_tools.version)

 	dpkg_comparison_cache (in module deb_pkg_tools.version)

 	dump() (deb_pkg_tools.deb822.Deb822 method)

 	dump_deb822() (in module deb_pkg_tools.deb822)

 	DuplicateFilesFound

E

 	
 	EntropyGenerator (class in deb_pkg_tools.gpg)

 	
 	epoch (deb_pkg_tools.version.Version attribute)

 	existing_files (deb_pkg_tools.gpg.GPGKey attribute)

F

 	
 	filename (deb_pkg_tools.package.PackageFile attribute)

 	FILES_TO_REMOVE (in module deb_pkg_tools.package)

 	find_debian_architecture() (in module deb_pkg_tools.utils)

 	find_installed_version() (in module deb_pkg_tools.utils)

 	
 	find_latest_version() (in module deb_pkg_tools.package)

 	find_object_files() (in module deb_pkg_tools.package)

 	find_package_archives() (in module deb_pkg_tools.package)

 	find_system_dependencies() (in module deb_pkg_tools.package)

 	FORCE_ENTROPY (in module deb_pkg_tools.gpg)

G

 	
 	generate_entropy() (in module deb_pkg_tools.gpg)

 	generate_key_pair() (deb_pkg_tools.gpg.GPGKey method)

 	get_default_cache() (in module deb_pkg_tools.cache)

 	get_digit_prefix() (in module deb_pkg_tools.version.native)

 	get_entry() (deb_pkg_tools.cache.PackageCache method)

 	get_non_digit_prefix() (in module deb_pkg_tools.version.native)

 	get_order_mapping() (in module deb_pkg_tools.version.native)

 	
 	get_packages_entry() (in module deb_pkg_tools.repo)

 	get_value() (deb_pkg_tools.cache.CacheEntry method)

 	GPG_AGENT_VARIABLE (in module deb_pkg_tools.gpg)

 	gpg_command (deb_pkg_tools.gpg.GPGKey attribute)

 	GPGKey (class in deb_pkg_tools.gpg)

 	group (deb_pkg_tools.package.ArchiveEntry attribute)

 	group_by_latest_versions() (in module deb_pkg_tools.package)

H

 	
 	have_updated_gnupg() (in module deb_pkg_tools.gpg)

 	
 	highlight() (in module deb_pkg_tools.cli)

I

 	
 	identifier (deb_pkg_tools.gpg.GPGKey attribute)

 	initialize_gnupg() (in module deb_pkg_tools.gpg)

 	inspect_package() (in module deb_pkg_tools.package)

 	
 	inspect_package_contents() (in module deb_pkg_tools.package)

 	inspect_package_fields() (in module deb_pkg_tools.package)

 	is_binary_file() (in module deb_pkg_tools.package)

K

 	
 	key_id (deb_pkg_tools.gpg.GPGKey attribute)

L

 	
 	load_config() (in module deb_pkg_tools.repo)

 	
 	load_control_file() (in module deb_pkg_tools.control)

M

 	
 	main() (in module deb_pkg_tools.cli)

 	makedirs() (in module deb_pkg_tools.utils)

 	MANDATORY_BINARY_CONTROL_FIELDS (in module deb_pkg_tools.control)

 	match_relationships() (in module deb_pkg_tools.package)

 	matches() (deb_pkg_tools.deps.AbstractRelationship method)

 	(deb_pkg_tools.deps.AlternativeRelationship method)

 	(deb_pkg_tools.deps.Relationship method)

 	(deb_pkg_tools.deps.RelationshipSet method)

 	(deb_pkg_tools.deps.VersionedRelationship method)

 	
 	merge_control_fields() (in module deb_pkg_tools.control)

 	modified (deb_pkg_tools.package.ArchiveEntry attribute)

N

 	
 	name (deb_pkg_tools.deps.Relationship attribute)

 	(deb_pkg_tools.gpg.GPGKey attribute)

 	(deb_pkg_tools.package.PackageFile attribute)

 	names (deb_pkg_tools.deps.AbstractRelationship attribute)

 	(deb_pkg_tools.deps.AlternativeRelationship attribute)

 	(deb_pkg_tools.deps.Relationship attribute)

 	(deb_pkg_tools.deps.RelationshipSet attribute)

 	
 	NATIVE_COMPARISON_CACHE (in module deb_pkg_tools.version)

 	new_usage (deb_pkg_tools.gpg.GPGKey attribute)

 	newer_versions (deb_pkg_tools.package.PackageFile attribute)

 	normalize_control_field_name() (in module deb_pkg_tools.control)

O

 	
 	OBJECT_FILE_EXCLUDES (in module deb_pkg_tools.package)

 	old_usage (deb_pkg_tools.gpg.GPGKey attribute)

 	operator (deb_pkg_tools.deps.VersionedRelationship attribute)

 	
 	optimize_order() (in module deb_pkg_tools.utils)

 	other_versions (deb_pkg_tools.package.PackageFile attribute)

 	owner (deb_pkg_tools.package.ArchiveEntry attribute)

P

 	
 	package_cache_directory (in module deb_pkg_tools.config)

 	PackageCache (class in deb_pkg_tools.cache)

 	PackageFile (class in deb_pkg_tools.package)

 	parse_alternatives() (in module deb_pkg_tools.deps)

 	parse_control_fields() (in module deb_pkg_tools.control)

 	parse_deb822() (in module deb_pkg_tools.deb822)

 	parse_depends() (in module deb_pkg_tools.deps)

 	
 	parse_filename() (in module deb_pkg_tools.package)

 	parse_relationship() (in module deb_pkg_tools.deps)

 	PARSE_STRICT (in module deb_pkg_tools.package)

 	patch_control_file() (in module deb_pkg_tools.control)

 	permissions (deb_pkg_tools.package.ArchiveEntry attribute)

 	PREFER_DPKG (in module deb_pkg_tools.version)

 	public_key_file (deb_pkg_tools.gpg.GPGKey attribute)

R

 	
 	Relationship (class in deb_pkg_tools.deps)

 	relationships (deb_pkg_tools.deps.AlternativeRelationship attribute)

 	(deb_pkg_tools.deps.RelationshipSet attribute)

 	RelationshipSet (class in deb_pkg_tools.deps)

 	
 	repo_config_file (in module deb_pkg_tools.config)

 	ResourceLockedException

 	ROOT_GROUP (in module deb_pkg_tools.package)

 	ROOT_USER (in module deb_pkg_tools.package)

S

 	
 	say() (in module deb_pkg_tools.cli)

 	scan_packages() (in module deb_pkg_tools.repo)

 	scoped_command (deb_pkg_tools.gpg.GPGKey attribute)

 	secret_key_file (deb_pkg_tools.gpg.GPGKey attribute)

 	select_gpg_key() (in module deb_pkg_tools.repo)

 	set_memcached() (deb_pkg_tools.cache.CacheEntry method)

 	set_old_defaults() (deb_pkg_tools.gpg.GPGKey method)

 	set_value() (deb_pkg_tools.cache.CacheEntry method)

 	
 	sha1() (in module deb_pkg_tools.utils)

 	show_package_metadata() (in module deb_pkg_tools.cli)

 	size (deb_pkg_tools.package.ArchiveEntry attribute)

 	smart_copy() (in module deb_pkg_tools.cli)

 	SPECIAL_CASES (in module deb_pkg_tools.control)

 	strip_object_files() (in module deb_pkg_tools.package)

 	system_cache_directory (in module deb_pkg_tools.config)

 	system_config_directory (in module deb_pkg_tools.config)

T

 	
 	target (deb_pkg_tools.package.ArchiveEntry attribute)

U

 	
 	unparse_control_fields() (in module deb_pkg_tools.control)

 	up_to_date() (deb_pkg_tools.cache.CacheEntry method)

 	update_conffiles() (in module deb_pkg_tools.package)

 	update_installed_size() (in module deb_pkg_tools.package)

 	
 	update_repository() (in module deb_pkg_tools.repo)

 	upstream_version (deb_pkg_tools.version.Version attribute)

 	use_agent (deb_pkg_tools.gpg.GPGKey attribute)

 	user_cache_directory (in module deb_pkg_tools.config)

 	user_config_directory (in module deb_pkg_tools.config)

V

 	
 	Version (class in deb_pkg_tools.version)

 	version (deb_pkg_tools.deps.VersionedRelationship attribute)

 	(deb_pkg_tools.package.PackageFile attribute)

 	
 	VersionConflictFound

 	VersionedRelationship (class in deb_pkg_tools.deps)

W

 	
 	with_repository() (in module deb_pkg_tools.repo)

 	
 	with_repository_wrapper() (in module deb_pkg_tools.cli)

 	write_file() (deb_pkg_tools.cache.CacheEntry method)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 deb-pkg-tools: Debian packaging tools

 		
 deb-pkg-tools: Debian packaging tools

 		
 Status

 		
 Installation

 		
 Usage

 		
 Dependencies

 		
 Platform compatibility

 		
 Disabling sudo usage

 		
 Contact

 		
 License

 		
 API documentation

 		
 deb_pkg_tools.cache

 		
 Internals

 		
 deb_pkg_tools.checks

 		
 deb_pkg_tools.cli

 		
 deb_pkg_tools.config

 		
 deb_pkg_tools.control

 		
 deb_pkg_tools.deb822

 		
 deb_pkg_tools.deps

 		
 deb_pkg_tools.gpg

 		
 GnuPG 2.1 compatibility

 		
 deb_pkg_tools.package

 		
 deb_pkg_tools.repo

 		
 deb_pkg_tools.utils

 		
 deb_pkg_tools.version

 		
 deb_pkg_tools.version.native

 		
 Changelog

 		
 Release 8.4 (2021-03-09)

 		
 Release 8.3 (2020-05-11)

 		
 Release 8.2 (2020-05-02)

 		
 Release 8.1 (2020-04-25)

 		
 Release 8.0 (2020-04-25)

 		
 Release 7.0 (2020-02-07)

 		
 Release 6.1 (2020-02-05)

 		
 Release 6.0 (2019-09-13)

 		
 Release 5.2 (2018-11-17)

 		
 Release 5.1.1 (2018-10-26)

 		
 Release 5.1 (2018-10-26)

 		
 Release 5.0 (2018-10-25)

 		
 Release 4.5 (2018-02-25)

 		
 Release 4.4 (2018-02-25)

 		
 Release 4.3 (2018-02-25)

 		
 Release 4.2 (2017-07-10)

 		
 Release 4.1 (2017-07-10)

 		
 Release 4.0.2 (2017-02-02)

 		
 Release 4.0.1 (2017-02-01)

 		
 Release 4.0 (2017-01-31)

 		
 Release 3.1 (2017-01-27)

 		
 Release 3.0 (2016-11-25)

 		
 Release 2.0 (2016-11-18)

 		
 Release 1.37 (2016-11-17)

 		
 Release 1.36 (2016-05-04)

 		
 Release 1.35 (2015-09-24)

 		
 Release 1.34.1 (2015-09-07)

 		
 Release 1.34 (2015-07-16)

 		
 Release 1.33 (2015-07-16)

 		
 Release 1.32.2 (2015-05-01)

 		
 Release 1.32.1 (2015-05-01)

 		
 Release 1.32 (2015-04-23)

 		
 Release 1.31 (2015-04-11)

 		
 Release 1.30 (2015-03-18)

 		
 Release 1.29.4 (2015-02-26)

 		
 Release 1.29.3 (2014-12-16)

 		
 Release 1.29.2 (2014-12-16)

 		
 Release 1.29.1 (2014-11-15)

 		
 Release 1.29 (2014-10-19)

 		
 Release 1.28 (2014-09-17)

 		
 Release 1.27.3 (2014-08-31)

 		
 Release 1.27.2 (2014-08-31)

 		
 Release 1.27.1 (2014-08-31)

 		
 Release 1.27 (2014-08-31)

 		
 Release 1.26.4 (2014-08-30)

 		
 Release 1.26.3 (2014-08-30)

 		
 Release 1.26.2 (2014-08-30)

 		
 Release 1.26 (2014-08-30)

 		
 Release 1.25 (2014-08-30)

 		
 Release 1.24.1 (2014-08-26)

 		
 Release 1.24 (2014-08-26)

 		
 Release 1.23.4 (2014-08-04)

 		
 Release 1.23.3 (2014-06-27)

 		
 Release 1.23.2 (2014-06-25)

 		
 Release 1.23.1 (2014-06-25)

 		
 Release 1.23 (2014-06-25)

 		
 Release 1.22.6 (2014-06-22)

 		
 Release 1.22.5 (2014-06-22)

 		
 Release 1.22.4 (2014-06-22)

 		
 Release 1.22.3 (2014-06-19)

 		
 Release 1.22.2 (2014-06-19)

 		
 Release 1.22.1 (2014-06-16)

 		
 Release 1.22 (2014-06-09)

 		
 Release 1.21 (2014-06-09)

 		
 Release 1.20.11 (2014-06-08)

 		
 Release 1.20.10 (2014-06-08)

 		
 Release 1.20.9 (2014-06-07)

 		
 Release 1.20.8 (2014-06-07)

 		
 Release 1.20.7 (2014-06-07)

 		
 Release 1.20.6 (2014-06-07)

 		
 Release 1.20.5 (2014-06-05)

 		
 Release 1.20.4 (2014-06-01)

 		
 Release 1.20.3 (2014-06-01)

 		
 Release 1.20.2 (2014-06-01)

 		
 Release 1.20.1 (2014-06-01)

 		
 Release 1.20 (2014-06-01)

 		
 Release 1.19 (2014-06-01)

 		
 Release 1.18.5 (2014-05-28)

 		
 Release 1.18.4 (2014-05-28)

 		
 Release 1.18.3 (2014-05-26)

 		
 Release 1.18.2 (2014-05-26)

 		
 Release 1.18.1 (2014-05-25)

 		
 Release 1.18 (2014-05-25)

 		
 Release 1.17.7 (2014-05-18)

 		
 Release 1.17.6 (2014-05-18)

 		
 Release 1.17.5 (2014-05-18)

 		
 Release 1.17.4 (2014-05-18)

 		
 Release 1.17.3 (2014-05-18)

 		
 Release 1.17.2 (2014-05-18)

 		
 Release 1.17.1 (2014-05-18)

 		
 Release 1.17 (2014-05-18)

 		
 Release 1.16 (2014-05-18)

 		
 Release 1.15.2 (2014-05-16)

 		
 Release 1.15.1 (2014-05-10)

 		
 Release 1.15 (2014-05-10)

 		
 Release 1.14.7 (2014-05-04)

 		
 Release 1.14.6 (2014-05-03)

 		
 Release 1.14.5 (2014-05-03)

 		
 Release 1.14.4 (2014-05-03)

 		
 Release 1.14.3 (2014-05-03)

 		
 Release 1.14.2 (2014-04-29)

 		
 Release 1.14.1 (2014-04-29)

 		
 Release 1.14 (2014-04-29)

 		
 Release 1.13.2 (2014-04-28)

 		
 Release 1.13.1 (2014-04-28)

 		
 Release 1.13 (2013-11-16)

 		
 Release 1.12.1 (2013-11-03)

 		
 Release 1.12 (2013-11-03)

 		
 Release 1.11 (2013-11-02)

 		
 Release 1.10.2 (2013-11-02)

 		
 Release 1.10.1 (2013-11-02)

 		
 Release 1.10 (2013-11-02)

 		
 Release 1.9.9 (2013-10-22)

 		
 Release 1.9.8 (2013-10-22)

 		
 Release 1.9.7 (2013-10-22)

 		
 Release 1.9.6 (2013-10-21)

 		
 Release 1.9.5 (2013-10-20)

 		
 Release 1.9.4 (2013-10-20)

 		
 Release 1.9.3 (2013-10-20)

 		
 Release 1.9.2 (2013-10-20)

 		
 Release 1.9.1 (2013-10-20)

 		
 Release 1.9 (2013-10-20)

 		
 Release 1.8 (2013-10-20)

 		
 Release 1.7.2 (2013-10-19)

 		
 Release 1.7.1 (2013-10-18)

 		
 Release 1.7 (2013-10-16)

 		
 Release 1.6.2 (2013-10-13)

 		
 Release 1.6.1 (2013-10-12)

 		
 Release 1.6 (2013-10-12)

 		
 Release 1.5 (2013-10-12)

 		
 Release 1.4.3 (2013-10-12)

 		
 Release 1.4.2 (2013-10-12)

 		
 Release 1.4.1 (2013-08-13)

 		
 Release 1.4 (2013-08-13)

 		
 Release 1.3.2 (2013-08-13)

 		
 Release 1.3.1 (2013-08-11)

 		
 Release 1.3 (2013-08-11)

 		
 Release 1.2 (2013-08-10)

 		
 Release 1.1.4 (2013-08-10)

 		
 Release 1.1.3 (2013-08-10)

 		
 Release 1.1.2 (2013-08-07)

 		
 Release 1.1.1 (2013-08-07)

 		
 Release 1.1 (2013-08-05)

 		
 Release 1.0.3 (2013-08-04)

 		
 Release 1.0.2 (2013-08-04)

 		
 Release 1.0.1 (2013-08-04)

 		
 Release 1.0 (2013-07-26)

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_images/badge.png
‘coverage 91%

